5 resultados para software project

em Open University Netherlands


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents and validates a methodology for integrating reusable software components in diverse game engines. While conforming to the RAGE com-ponent-based architecture described elsewhere, the paper explains how the interac-tions and data exchange processes between a reusable software component and a game engine should be implemented for procuring seamless integration. To this end, a RAGE-compliant C# software component providing a difficulty adaptation routine was integrated with an exemplary strategic tile-based game “TileZero”. Implementa-tions in MonoGame, Unity and Xamarin, respectively, have demonstrated successful portability of the adaptation component. Also, portability across various delivery platforms (Windows desktop, iOS, Android, Windows Phone) was established. Thereby this study has established the validity of the RAGE architecture and its un-derlying interaction processes for the cross-platform and cross-game engine reuse of software components. The RAGE architecture thereby accommodates the large scale development and application of reusable software components for serious gaming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of D6.1 is to make the Ecosystem software platform with underlying Software Repository, Digital Library and Media Archive available to the degree, that the RAGE project can start collecting content in the form of software assets, and documents of various media types. This paper describes the current state of the Ecosystem as of month 12 of the project, and documents the structure of the Ecosystem, individual components, integration strategies, and overall approach. The deliverable itself is the deployment of the described components, which is now available to collect and curate content. Whilst this version is not yet feature complete, full realization is expected within the next few months. Following this development, WP6 will continue to add features driven by the business models to be defined by WP7 later on in the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presentation explains the approach of the RAGE project. It presents three examples of RAGE software components and how these can be easily reused for applied game development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software assets are key output of the RAGE project and they can be used by applied game developers to enhance the pedagogical and educational value of their games. These software assets cover a broad spectrum of functionalities – from player analytics including emotion detection to intelligent adaptation and social gamification. In order to facilitate integration and interoperability, all of these assets adhere to a common model, which describes their properties through a set of metadata. In this paper the RAGE asset model and asset metadata model is presented, capturing the detail of assets and their potential usage within three distinct dimensions – technological, gaming and pedagogical. The paper highlights key issues and challenges in constructing the RAGE asset and asset metadata model and details the process and design of a flexible metadata editor that facilitates both adaptation and improvement of the asset metadata model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The large upfront investments required for game development pose a severe barrier for the wider uptake of serious games in education and training. Also, there is a lack of well-established methods and tools that support game developers at preserving and enhancing the games’ pedagogical effectiveness. The RAGE project, which is a Horizon 2020 funded research project on serious games, addresses these issues by making available reusable software components that aim to support the pedagogical qualities of serious games. In order to easily deploy and integrate these game components in a multitude of game engines, platforms and programming languages, RAGE has developed and validated a hybrid component-based software architecture that preserves component portability and interoperability. While a first set of software components is being developed, this paper presents selected examples to explain the overall system’s concept and its practical benefits. First, the Emotion Detection component uses the learners’ webcams for capturing their emotional states from facial expressions. Second, the Performance Statistics component is an add-on for learning analytics data processing, which allows instructors to track and inspect learners’ progress without bothering about the required statistics computations. Third, a set of language processing components accommodate the analysis of textual inputs of learners, facilitating comprehension assessment and prediction. Fourth, the Shared Data Storage component provides a technical solution for data storage - e.g. for player data or game world data - across multiple software components. The presented components are exemplary for the anticipated RAGE library, which will include up to forty reusable software components for serious gaming, addressing diverse pedagogical dimensions.