2 resultados para Sentiment de compétence

em Open University Netherlands


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opinion mining and sentiment analysis are important research areas of Natural Language Processing (NLP) tools and have become viable alternatives for automatically extracting the affective information found in texts. Our aim is to build an NLP model to analyze gamers’ sentiments and opinions expressed in a corpus of 9750 game reviews. A Principal Component Analysis using sentiment analysis features explained 51.2 % of the variance of the reviews and provides an integrated view of the major sentiment and topic related dimensions expressed in game reviews. A Discriminant Function Analysis based on the emerging components classified game reviews into positive, neutral and negative ratings with a 55 % accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we introduce the online version of our ReaderBench framework, which includes multi-lingual comprehension-centered web services designed to address a wide range of individual and collaborative learning scenarios, as follows. First, students can be engaged in reading a course material, then eliciting their understanding of it; the reading strategies component provides an in-depth perspective of comprehension processes. Second, students can write an essay or a summary; the automated essay grading component provides them access to more than 200 textual complexity indices covering lexical, syntax, semantics and discourse structure measurements. Third, students can start discussing in a chat or a forum; the Computer Supported Collaborative Learning (CSCL) component provides indepth conversation analysis in terms of evaluating each member’s involvement in the CSCL environments. Eventually, the sentiment analysis, as well as the semantic models and topic mining components enable a clearer perspective in terms of learner’s points of view and of underlying interests.