1 resultado para Opinion mining
em Open University Netherlands
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Aquatic Commons (3)
- Archive of European Integration (17)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Boston University Digital Common (2)
- Brock University, Canada (5)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (139)
- Center for Jewish History Digital Collections (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (15)
- Cochin University of Science & Technology (CUSAT), India (4)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (16)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons @ Winthrop University (1)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (109)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (13)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (25)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (12)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (53)
- Queensland University of Technology - ePrints Archive (271)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (21)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (4)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad de Alicante (15)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (12)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (10)
- University of Southampton, United Kingdom (6)
- WestminsterResearch - UK (4)
Resumo:
Opinion mining and sentiment analysis are important research areas of Natural Language Processing (NLP) tools and have become viable alternatives for automatically extracting the affective information found in texts. Our aim is to build an NLP model to analyze gamers’ sentiments and opinions expressed in a corpus of 9750 game reviews. A Principal Component Analysis using sentiment analysis features explained 51.2 % of the variance of the reviews and provides an integrated view of the major sentiment and topic related dimensions expressed in game reviews. A Discriminant Function Analysis based on the emerging components classified game reviews into positive, neutral and negative ratings with a 55 % accuracy.