5 resultados para swd: 3D-Scanner
em Greenwich Academic Literature Archive - UK
Resumo:
The main goal of a cell stability MHD model like MHD-Valdis is to help locate the busbars around the cell in a way which leads to the generation of a magnetic field inside the cell that itself leads to a stable cell operation. Yet as far as the cell stability is concerned, the uniformity of the current density in the metal pad is also extremely important and can only be achieved with a correct busbar network sizing. This work compares the usage of a detailed ANSYS based 3D thermo-electric model with the one of the versatile 1D part of MHD-Valdis to help design a well balanced busbar network.
Resumo:
This paper details the prototyping of a novel three axial micro probe based on utilisation of piezoelectric sensors and actuators for true three dimensional metrology and measurements at micro- and nanometre scale. Computational mechanics is used first to model and simulate the performance of the conceptual design of the micro-probe. Piezoelectric analysis is conducted to understand performance of three different materials - silicon, glassy carbon, and nickel - and the effect of load parameters (amplitude, frequency, phase angle) on the magnitude of vibrations. Simulations are also used to compare several design options for layout of the lead zirconium titanate (PZT) sensors and to identify the most feasible from fabrication point of view design. The material options for the realisation of the device have been also tested. Direct laser machining was selected as the primary means of production. It is found that a Yb MOPA based fiber laser was capable of providing the necessary precision on glassy carbon (GC), although machining trials on Si and Ni were less successful due to residual thermal effects.To provide the active and sensing elements on the flexures of the probe, PZT thick films are developed and deposited at low temperatures (Lt720 degC) allowing a high quality functional ceramic to be directly integrated with selected materials. Characterisation of the materials has shown that the film has a homogenous and small pore microstructure.
Resumo:
Nano-imprint forming (NIF) as manufacturing technology is ideally placed to enable high resolution, low-cost and high-throughput fabrication of three-dimensional fine structures and the packaging of heterogeneous micro-systems (S.Y. Chou and P.R. Krauss, 1997). This paper details a thermo-mechanical modelling methodology for optimising this process for different materials used in components such as mini-fluidics and bio-chemical systems, optoelectronics, photonics and health usage monitoring systems (HUMS). This work is part of a major UK Grand Challenge project - 3D-Mintegration - which is aiming to develop modelling and design technologies for the next generation of fabrication, assembly and test processes for 3D-miniaturised systems.
Resumo:
A 3D time-dependent model of the VAR process has been developed using CFD techniques. The model solves the coupled field equations for fluid flow, heat transfer (including phase change) and electromagnetic field, for both the electrode and the ingot. The motion of the electic arc 'preferred spot' can be specified based on observations. Correlations are sought between the local gap height, resulting from instantaneous liquid pool surface shape and electrode tip shape, and the arc motion. The detailed behaviour of the melting film on the electrode tip is studies using a spectral free surface technique, which allows investigation of the drops' detachment and drip shorts.
Resumo:
A project within a computing department at the University of Greenwich, has been carried out to identify whether podcasting can be used to help understanding and learning of a subject (3D Animation). We know that the benefits of podcasting in education (HE) can be justified, [1]; [2]; [3]; [4]; [5]; [6] and that some success has been proven, but this paper aims to report the results of a term-long project that provided podcast materials for students to help support their learning using Xserve and Podcast Producer technology. Findings in a previous study [6] identified podcasting as a way to diversify learning and provde a more personalised learning experience for students, as well as being able to provide access to a greater mix of learning styles [7]. Finally this paper aims to present the method of capture and distribution, the methodologies of the study, analysis of results, and conclusions that relate to podcasting and enhanced supported learning.