15 resultados para impact of NAPLAN
em Greenwich Academic Literature Archive - UK
Resumo:
The International Maritime Organisation (IMO) has adopted the use of computer simulation to assist in the assessment of the assembly time for passenger ships. A key parameter required for this analysis and specified as part of the IMO guidelines is the passenger response time distribution. It is demonstrated in this paper that the IMO specified response time distribution assumes an unrealistic mathematical form. This unrealistic mathematical form can lead to serious congestion issues being overlooked in the evacuation analysis and lead to incorrect conclusions concerning the suitability of vessel design. In light of these results, it is vital that IMO undertake research to generate passenger response time data suitable for use in evacuation analysis of passenger ships. Until this type of data becomes readily available, it is strongly recommended that rather than continuing to use the artificial and unrepresentative form of the response time distribution, IMO should adopt plausible and more realistic response time data derived from land based applications. © 2005: Royal Institution of Naval Architects.
Resumo:
This study investigates the use of computer modelled versus directly experimentally determined fire hazard data for assessing survivability within buildings using evacuation models incorporating Fractionally Effective Dose (FED) models. The objective is to establish a link between effluent toxicity, measured using a variety of small and large scale tests, and building evacuation. For the scenarios under consideration, fire simulation is typically used to determine the time non-survivable conditions develop within the enclosure, for example, when smoke or toxic effluent falls below a critical height which is deemed detrimental to evacuation or when the radiative fluxes reach a critical value leading to the onset of flashover. The evacuation calculation would the be used to determine whether people within the structure could evacuate before these critical conditions develop.
Resumo:
This work explores the impact of response time distributions on high-rise building evacuation. The analysis utilises response times extracted from printed accounts and interviews of evacuees from the WTC North Tower evacuation of 11 September 2001. Evacuation simulations produced using these “real” response time distributions are compared with simulations produced using instant and engineering response time distributions. Results suggest that while typical engineering approximations to the response time distribution may produce reasonable evacuation times for up to 90% of the building population, using this approach may underestimate total evacuation times by as much as 61%. These observations are applicable to situations involving large high-rise buildings in which travel times are generally expected to be greater than response times
Resumo:
This paper examines the influence of exit availability on evacuation time for a narrow body aircraft under certification trial conditions using computer simulation. A narrow body aircraft which has previously passed the certification trial is used as the test configuration. While maintaining the certification requirement of 50% of the available exits, six different exit configurations are examined. These include the standard certification configuration (one exit from each exit pair) and five other exit configurations based on commonly occurring exit combinations found in accidents. These configurations are based on data derived from the AASK database and the evacuation simulations are performed using the airEXODUS evacuation simulation software. The results show that the certification practice of using half the available exits predominately down one side of the aircraft is neither statistically relevant nor challenging. For the aircraft cabin layout examined, the exit configuration used in certification trial produces the shortest egress times. Furthermore, three of the six exit combinations investigated result in predicted egress times in excess of 90 seconds, suggesting that the aircraft would not satisfy the certification requirement under these conditions.
Resumo:
The SMARTFIRE Computational Fluid Dynamics (CFD) fire field model has successfully reproduced the observed characteristics including measured temperatures, species concentrations and time to flashover for a post-crash fire experiment conducted by the FAA within their C-133 cabin test facility. In this test only one exit was open in order to provide ventilation for the developing cabin fire. In real post-crash fires, many exits are likely to be open as passangers attempt to evacuate. In this paper, the likely impacts on evacuation of a post-crash fire in which various exiting combinations are available are investigated. The fire scenario, investigated using the SMARTFIRE software, is based on the C-133 experiment but with a fully furnished cabin and with four different exit availability options. The fire data is imported into the airEXODUS evacuation simulation software and the resulting evacuations examined. The combined fire and evacuation analysis reveals that even though the aircraft configuration is predicted to comfortably satisfy the evacuation certification requirement, when fire is included, a number of casualties result, even from the certification compliant exit configuration.
Resumo:
Evaluating ship layout for human factors (HF) issues using simulation software such as maritimeEXODUS can be a long and complex process. The analysis requires the identification of relevant evaluation scenarios; encompassing evacuation and normal operations; the development of appropriate measures which can be used to gauge the performance of crew and vessel and finally; the interpretation of considerable simulation data. Currently, the only agreed guidelines for evaluating HFs performance of ship design relate to evacuation and so conclusions drawn concerning the overall suitability of a ship design by one naval architect can be quite different from those of another. The complexity of the task grows as the size and complexity of the vessel increases and as the number and type of evaluation scenarios considered increases. Equally, it can be extremely difficult for fleet operators to set HFs design objectives for new vessel concepts. The challenge for naval architects is to develop a procedure that allows both accurate and rapid assessment of HFs issues associated with vessel layout and crew operating procedures. In this paper we present a systematic and transparent methodology for assessing the HF performance of ship design which is both discriminating and diagnostic. The methodology is demonstrated using two variants of a hypothetical naval ship.
Resumo:
Assembly processes used to bond components to printed circuit boards can have a significant impact on these boards and the final packaged component. Traditional approaches to bonding components to printed circuit boards results in heat being applied across the whole board assembly. This can lead to board warpage and possibly high residual stresses. Another approach discussed in this paper is to use Variable Frequency Microwave (VFM) heating to cure adhesives and underfills and bond components to printed circuit boards. In terms of energy considerations the use of VFM technology is much more cost effective compared to convection/radiation heating. This paper will discuss the impact of traditional reflow based processes on flexible substrates and it will demonstrate the possible advantages of using localised variable frequency microwave heating to cure materials in an electronic package.
Resumo:
In previous publications [1,2], it was rationalized that a large vertical potshell deformation may have a negative impact on the operations of very high amperage cells. The MHD-Valdis non-linear Magneto-Hydro-Dynamic model was therefore extended to take into account the displacement of the potshell. The MHD cell stability behavior of a 500 kA cell with a 17.3 meters long potshell was then studied.
Resumo:
This paper presents the perception of practitioners of the impact of the Moser Committee recommendations and the Skills for Life agenda it generated. The paper further explores areas of convergence and divergence between practitioners’ perceptions and the underpinning values of the Moser Committee recommendations. The study utilised a range of research tools including an online questionnaire, documentary analysis and elements of discourse analysis in the collection and analysis of data. It found that there is substantial divergence between the perception of practitioners and the values underpinning policy. It concludes by suggesting that a varying perception of what constitutes sustainable education and the lack of input from practitioners into policy might be responsible for this significant divergence of opinion and also raised a question on the perceived role of practitioners in the policy‐making process.
Resumo:
This paper examines the influence of exit availability on evacuation time for narrow body aircraft under certification trial conditions using computer simulation. A narrow body aircraft which has previously passed the certification trial is used as the test configuration. While maintaining the certification requirement of 50% of the available exits, six different configurations are examined. These include the standard certification and five other exit configurations based on commonly occurring exit combinations found in accidents. These configurations are based on data derived from the AASK database and the evacuation simulations are performed using the airEXODUS evacuation software. The results show that the certification practise of using half of the available exits predominately down one side of the aircraft is neither statistically relevant nor challenging. For the aircraft cabin layout examined, the exit configuration used in certification trial produces the shortest egress times. Furthermore, three of the six exit combinations investigated result in predicted egress times in excess of 90 seconds, suggesting that the aircraft would not satisfy the certification requirement under these conditions.
Resumo:
Purpose: To study the impact of powder flow properties on dosator filling systems, with particular focus on improvements in dose weight accuracy and repeatability. Method: This study evaluates a range of critical powder flow properties such as: flow function, cohesion, wall friction, adhesion to wall surfaces, density/compressibility data, stress ratio “K” and gas permeability. The characterisations of the powders considered in this study were undertaken using an annular shear cell using a sample size of 0.5 litres. This tester also incorporated the facility to measure bed expansion during shear in addition to contraction under consolidation forces. A modified Jenike type linear wall friction tester was used to develop the failure loci for the powder sample in conjunction with multiple wall samples (representing a variety of material types and surface finishes). Measurements of the ratio of applied normal stress versus lateral stress were determined using a piece of test equipment specifically designed for the purpose. Results: The correct characterisation of powders and the incorporation of this data into the design of process equipment are recognised as critical for reliable and accurate operation. An example of one aspect of this work is the stress ratio “K”. This characteristic is not well understood or correctly interpreted in many cases – despite its importance. Fig 1 [Omitted] (illustrates a sample of test data. The slope of the line gives the stress ratio in a uniaxial compaction system – indicating the behaviour of the material under compaction during dosing processes. Conclusions: A correct assessment of the bulk powder properties for a given formulation can allow prediction of: cavity filling behaviour (and hence dosage), efficiency of release from dosator, and strength and stability of extruded dose en route to capsule filling Influences over the effectiveness of dosator systems have been shown to be impacted upon by: bed pre-compaction history, gas permeability in the bed (with respect to local density effects), and friction effects for materials of construction for dosators
Resumo:
Introduction: Evidence from studies conducted mainly in the US and mainland Europe suggests that characteristics of the workforce, such as nurse patient ratios and workload (measured in a number of different ways) may be linked to variations in patient outcomes across health care settings (Carmel and Rowan 2001). Few studies have tested this relationship in the UK thus questions remain about whether we are justified in extrapolating evidence from studies conducted in very different health care systems. Objectives: To investigate whether characteristics of the nursing workforce affect patient mortality UK Intensive Care Units. Data: Patient data came from the case mix programme, Intensive Care National Audit and Research Centre (ICNARC), while information about the units came from a survey of all ICUs in England (Audit Comission 1998). The merged data set contained information on 43,859 patients in 69 units across England. ICNARC also supplied a risk adjustment variable to control for patient characteristics that are often the most important determinants of survival. Methods: Multivariate multilevel logistic regression. Findings: Higher numbers of direct care nurses and lower scores on measures of workload(proportion of occupied beds at the time the patient was admitted and mean daily transfers into the unit) were associated with lower mortality rates. Furthermore, the effect of the number of direct care nurses was greatest on the life chances of the patients who were most at risk of dying. Implications: This study has wide implications for workforce policy and planning because it shows that the size of the nursing workforce is associated with mortality (West et al 2006). Few studies have demonstrated this relationship in the UK. This study has a number of strengths and weaknesses and further research is required to determine whether this relationship between the nursing workforce and patient outcomes is causal.