4 resultados para comparison method
em Greenwich Academic Literature Archive - UK
Resumo:
A novel three-dimensional finite volume (FV) procedure is described in detail for the analysis of geometrically nonlinear problems. The FV procedure is compared with the conventional finite element (FE) Galerkin approach. FV can be considered to be a particular case of the weighted residual method with a unit weighting function, where in the FE Galerkin method we use the shape function as weighting function. A Fortran code has been developed based on the finite volume cell vertex formulation. The formulation is tested on a number of geometrically nonlinear problems. In comparison with FE, the results reveal that FV can reach the FE results in a higher mesh density.
Resumo:
A vertex-based finite volume (FV) method is presented for the computational solution of quasi-static solid mechanics problems involving material non-linearity and infinitesimal strains. The problems are analysed numerically with fully unstructured meshes that consist of a variety of two- and threedimensional element types. A detailed comparison between the vertex-based FV and the standard Galerkin FE methods is provided with regard to discretization, solution accuracy and computational efficiency. For some problem classes a direct equivalence of the two methods is demonstrated, both theoretically and numerically. However, for other problems some interesting advantages and disadvantages of the FV formulation over the Galerkin FE method are highlighted.
Resumo:
In this paper, we first demonstrate that the classical Purcell's vector method when combined with row pivoting yields a consistently small growth factor in comparison to the well-known Gauss elimination method, the Gauss–Jordan method and the Gauss–Huard method with partial pivoting. We then present six parallel algorithms of the Purcell method that may be used for direct solution of linear systems. The algorithms differ in ways of pivoting and load balancing. We recommend algorithms V and VI for their reliability and algorithms III and IV for good load balance if local pivoting is acceptable. Some numerical results are presented.
Resumo:
This paper compares three alternative numerical algorithms applied to a nonlinear metal cutting problem. One algorithm is based on an explicit method and the other two are implicit. Domain decomposition (DD) is used to break the original domain into subdomains, each containing a properly connected, well-formulated and continuous subproblem. The serial version of the explicit algorithm is implemented in FORTRAN and its parallel version uses MPI (Message Passing Interface) calls. One implicit algorithm is implemented by coupling the state-of-the-art PETSc (Portable, Extensible Toolkit for Scientific Computation) software with in-house software in order to solve the subproblems. The second implicit algorithm is implemented completely within PETSc. PETSc uses MPI as the underlying communication library. Finally, a 2D example is used to test the algorithms and various comparisons are made.