14 resultados para Underground Railroad
em Greenwich Academic Literature Archive - UK
Resumo:
This presentation will discuss current developments in evacuation modelling and its role in and application to underground applications
Resumo:
This paper presents data relating to pedestrian escalator behaviour collected in an underground station in Shanghai, China. While data was not collected under emergency or simulated emergency conditions, it is argued that the data collected under rush-hour conditions - where commuters are under time pressures to get to work on time - may be used to approximate emergency evacuation conditions - where commuters are also under time pressures to exit the building as quickly as possible. Data pertaining to escalator/stair choice, proportion of walkers to riders, walker speeds and side usage are presented. The collected data is used to refine the buildingEXODUS escalator model allowing the agents to select whether to use an escalator or neighbouring parallel stair based on congestion conditiions at the base of the stair/escalator and expected travel times. The new model, together with the collected data, is used to simulate a series of hypothetical evacuation scenarios to demonstrate the impact of escalators on evacuation performance.
Resumo:
While incidents requiring the rapid egress of passengers from trains are infrequent, perhaps the most challenging scenario for passengers involves the evacuation from an overturned carriage subjected to fire. In this paper we attempt to estimate the flow rate capacity of an overturned rail carriage end exit. This was achieved through two full-scale evacuation experiments, in one of which the participants were subjected to non-toxic smoke. The experiments were conducted as part of a pilot study into evacuation from rail carriages. In reviewing the experimental results, it should be noted that only a single run of each trial was undertaken with a limited — though varied — population. As a result it is not possible to test the statistical significance of the evacuation times quoted and so the results should be treated as indicative rather than definitive. The carriage used in the experiments was a standard class Mark IID which, while an old carriage design, shares many features with those carriages commonly found on the British rail network. In the evacuation involving smoke, the carriage end exit was found to achieve an average flow rate capacity of approximately 5.0 persons/min. The average flow rate capacity of the exit without smoke was found to be approximately 9.2 persons/min. It was noted that the presence of smoke tended to reduce significantly the exit flow rate. Due to the nature of the experimental conditions, these flow rates are considered optimistic. Finally, the authors make several recommendations for improving survivability in rail accidents. Copyright © 2000 John Wiley & Sons, Ltd.
Resumo:
This presentation will attempt to address the issue of whether the engineering design community has the knowledge, data and tool sets required to undertake advanced evacuation analysis. In discussing this issue I want to draw on examples not only from the building industry but more widely from where ever people come into contact with an environment fashioned by man. Prescriptive design regulations the world over suggest that if we follow a particular set of essentially configurational regulations concerning travel distances, number of exits, exit widths, etc it should be possible to evacuate a structure within a pre-defined acceptable amount of time. In the U.K. for public buildings this turns out to be 2.5 minutes, internationally in the aviation industry this is 90 seconds, in the UK rail industry this is 90 seconds and the international standard adopted by the maritime industry is 60 minutes. The difficulties and short comings of this approach are well known and so I will not repeat them here, save to say that this approach is usually littered with “magic numbers” that do not stand up to scrutiny. As we are focusing on human behaviour issues, it is also worth noting that more generally, the approach fails to take into account how people actually behave, preferring to adopt an engineer’s view of what people should do in order to make their design work. Examples of the failure of this approach are legion and include the; Manchester Boeing 737 fire, Kings Cross underground station fire, Piper Alpha oil platform explosion, Ladbroke Grove Rail crash and fire, Mont Blanc tunnel fire, Scandinavian Star ferry fire and the Station Nightclub fire.
Resumo:
In this paper an introduction is given to the history, current situation and future plans of China's railway industry. The history of China's railway is divided into four development phases: the phase in Imperial China, the phase in the Republic of China and the phases before and after the economic rejuvenation of the People's Republic of China. An introduction to the current situation and future plans includes the major projects under construction and development trends of China's railways. The environment of China's railways is also presented. This is the first of two papers on the railway scene in China.
Resumo:
In this paper, an introduction is provided to some of the components of China's transport system. The authors include the urban rail transit systems, the highway transport systems and its competition for China's railways and the reform of China's railway industry. This is the second of two papers on the situation of rail transport in China.
Resumo:
This study utilized the latest computing techniques to analyze the driver's cab of a railroad vehicle colliding with deformable objects. It explored the differences between a collision with a deformable object and a collision with a rigid object. It also examined the differences between a collision with a large simple shaped object and a collision with a life-like object. Tools of analysis included vehicle dynamics analysis and finite element analysis.
Resumo:
In the current paper, the authors present an analysis of the structural characteristics of an intermediate rail vehicle and their effects on crash performance of the vehicle. Theirs is a simulation based analysis involving four stages. First, the crashworthiness of the vehicle is assessed by simulating an impact of the vehicle with a rigid wall. Second, the structural characteristics of the vehicle are analysed based on the structural behaviour during this impact and then the structure is modified. Third, the modified vehicle is tested again in the same impact scenario with a rigid wall. Finally, the modified vehicle is subjected to a modelled head-on impact which mirrors the real-life impact interface between two intermediate vehicles in a train impact. The emphasis of the current study is on the structural characteristics of the intermediate vehicle and the differences compared to an impact of a leading vehicle. The study shows that, similar to a leading vehicle, bending, or jackknifing is a main form of failure in this conventionally designed intermediate vehicle. It has also been found that the location of the door openings creates a major difference in the behaviour of an intermediate vehicle. It causes instability of the vehicle in the door area and leads to high stresses at the joint of the end beam with the solebar and shear stresses at the joint of the inner pillar with the cantrail. Apart from this, the shapes of the vehicle ends and impact interfaces are also different and have an effect on the crash performance of the vehicles. The simulation results allow the identification of the structural characteristics and show the effectiveness of relevant modifications. The conclusions have general relevance for the crashworthiness of rail vehicle design
Resumo:
This paper presents a comparison of impact dynamic performance between articulated trains and non-articulated trains. This is carried out by investigation of the characteristics of the two trains types and analysis of their effects on impact dynamics. The analysis shows that the differences in bogie support positions on the carbody and coupling devices lead to differences in several structural and compositional characteristics. These characteristics result in different impact responses for the two types of train and are directly related to their impact stablity. Articulated trains have stiff connection and integral performance in collisions but with less capability for absorbing impact energy between carriages, whereas non-articulated trains show loose connection and scattered performance in collisions but with more options for energy absorber installation between carriages.
Resumo:
This paper presents an escalator model for use in circulation and evacuation analysis. As part of the model development, human factors data was collected from a Spanish underground station. The collected data relates to: escalator/stair choice, rider/walker preference, rider side preference, walker travel speeds and escalator flow rates. The dataset provides insight into pedestrian behaviour in utilising escalators and is a useful resource for both circulation and evacuation models. Based on insight derived from the dataset a detailed microscopic escalator model which incorporates person-person interactions has been developed. A range of demonstration evacuation scenarios are presented using the newly developed microscopic escalator model.