5 resultados para Underground Railroad

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many particles proposed by theories, such as GUT monopoles, nuclearites and 1/5 charge superstring particles, can be categorized as Slow-moving, Ionizing, Massive Particles (SIMPs).

Detailed calculations of the signal-to-noise ratios in vanous acoustic and mechanical methods for detecting such SIMPs are presented. It is shown that the previous belief that such methods are intrinsically prohibited by the thermal noise is incorrect, and that ways to solve the thermal noise problem are already within the reach of today's technology. In fact, many running and finished gravitational wave detection ( GWD) experiments are already sensitive to certain SIMPs. As an example, a published GWD result is used to obtain a flux limit for nuclearites.

The result of a search using a scintillator array on Earth's surface is reported. A flux limit of 4.7 x 10^(-12) cm^(-2)sr^(-1)s^(-1) (90% c.l.) is set for any SIMP with 2.7 x 10^(-4) less than β less than 5 x 10^(-3) and ionization greater than 1/3 of minimum ionizing muons. Although this limit is above the limits from underground experiments for typical supermassive particles (10^(16)GeV), it is a new limit in certain β and ionization regions for less massive ones (~10^9 GeV) not able to penetrate deep underground, and implies a stringent limit on the fraction of the dark matter that can be composed of massive electrically and/ or magnetically charged particles.

The prospect of the future SIMP search in the MACRO detector is discussed. The special problem of SIMP trigger is examined and a circuit proposed, which may solve most of the problems of the previous ones proposed or used by others and may even enable MACRO to detect certain SIMP species with β as low as the orbital velocity around the earth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Part I of this thesis, a new magnetic spectrometer experiment which measured the β spectrum of ^(35)S is described. New limits on heavy neutrino emission in nuclear β decay were set, for a heavy neutrino mass range between 12 and 22 keV. In particular, this measurement rejects the hypothesis that a 17 keV neutrino is emitted, with sin^2 θ = 0.0085, at the 6δ statistical level. In addition, an auxiliary experiment was performed, in which an artificial kink was induced in the β spectrum by means of an absorber foil which masked a fraction of the source area. In this measurement, the sensitivity of the magnetic spectrometer to the spectral features of heavy neutrino emission was demonstrated.

In Part II, a measurement of the neutron spallation yield and multiplicity by the Cosmic-ray Underground Background Experiment is described. The production of fast neutrons by muons was investigated at an underground depth of 20 meters water equivalent, with a 200 liter detector filled with 0.09% Gd-loaded liquid scintillator. We measured a neutron production yield of (3.4 ± 0.7) x 10^(-5) neutrons per muon-g/cm^2, in agreement with other experiments. A single-to-double neutron multiplicity ratio of 4:1 was observed. In addition, stopped π^+ decays to µ^+ and then e^+ were observed as was the associated production of pions and neutrons, by the muon spallation interaction. It was seen that practically all of the π^+ produced by muons were also accompanied by at least one neutron. These measurements serve as the basis for neutron background estimates for the San Onofre neutrino detector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Daya Bay Reactor Antineutrino Experiment observed the disappearance of reactor $\bar{\nu}_e$ from six $2.9~GW_{th}$ reactor cores in Daya Bay, China. The Experiment consists of six functionally identical $\bar{\nu}_e$ detectors, which detect $\bar{\nu}_e$ by inverse beta decay using a total of about 120 metric tons of Gd-loaded liquid scintillator as the target volume. These $\bar{\nu}_e$ detectors were installed in three underground experimental halls, two near halls and one far hall, under the mountains near Daya Bay, with overburdens of 250 m.w.e, 265 m.w.e and 860 m.w.e. and flux-weighted baselines of 470 m, 576 m and 1648 m. A total of 90179 $\bar{\nu}_e$ candidates were observed in the six detectors over a period of 55 days, 57549 at the Daya Bay near site, 22169 at the Ling Ao near site and 10461 at the far site. By performing a rate-only analysis, the value of $sin^2 2\theta_{13}$ was determined to be $0.092 \pm 0.017$.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Politically the Colorado river is an interstate as well as an international stream. Physically the basin divides itself distinctly into three sections. The upper section from head waters to the mouth of San Juan comprises about 40 percent of the total of the basin and affords about 87 percent of the total runoff, or an average of about 15 000 000 acre feet per annum. High mountains and cold weather are found in this section. The middle section from the mouth of San Juan to the mouth of the Williams comprises about 35 percent of the total area of the basin and supplies about 7 percent of the annual runoff. Narrow canyons and mild weather prevail in this section. The lower third of the basin is composed of mainly hot arid plains of low altitude. It comprises some 25 percent of the total area of the basin and furnishes about 6 percent of the average annual runoff.

The proposed Diamond Creek reservoir is located in the middle section and is wholly within the boundary of Arizona. The site is at the mouth of Diamond Creek and is only 16 m. from Beach Spring, a station on the Santa Fe railroad. It is solely a power project with a limited storage capacity. The dam which creats the reservoir is of the gravity type to be constructed across the river. The walls and foundation are of granite. For a dam of 290 feet in height, the back water will be about 25 m. up the river.

The power house will be placed right below the dam perpendicular to the axis of the river. It is entirely a concrete structure. The power installation would consist of eighteen 37 500 H.P. vertical, variable head turbines, directly connected to 28 000 kwa. 110 000 v. 3 phase, 60 cycle generators with necessary switching and auxiliary apparatus. Each unit is to be fed by a separate penstock wholly embedded into the masonry.

Concerning the power market, the main electric transmission lines would extend to Prescott, Phoenix, Mesa, Florence etc. The mining regions of the mountains of Arizona would be the most adequate market. The demand of power in the above named places might not be large at present. It will, from the observation of the writer, rapidly increase with the wonderful advancement of all kinds of industrial development.

All these things being comparatively feasible, there is one difficult problem: that is the silt. At the Diamond Creek dam site the average annual silt discharge is about 82 650 acre feet. The geographical conditions, however, will not permit silt deposites right in the reservoir. So this design will be made under the assumption given in Section 4.

The silt condition and the change of lower course of the Colorado are much like those of the Yellow River in China. But one thing is different. On the Colorado most of the canyon walls are of granite, while those on the Yellow are of alluvial loess: so it is very hard, if not impossible, to get a favorable dam site on the lower part. As a visitor to this country, I should like to see the full development of the Colorado: but how about THE YELLOW!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of the Atchison, Topeka, and Santa Fe railroad in Pasadena is a very dynamic one, as is readily recognized by engineers, city officials, and laymen. The route of the railroad was first laid out in the eighties and because of certain liberal concessions granted by the City of Pasadena, the right-of-way was located through Pasadena, despite the fact that the grade coming into the city either from Los Angeles or San Bernardino was enormous. Some years later, other transcontinental routes of the Santa Fe out of Los Angles were sought, and a right-of-way was obtained by way of Fullerton and Riverside to San Bernardino, where this route joins the one from Los Angeles through Pasadena. This route, however, is ten miles longer than the one through Pasadena, which means a considerable loss of time in a short diversion of approximately only sixty miles in length.