4 resultados para Postnatal preparation
em Greenwich Academic Literature Archive - UK
Resumo:
The separation of red blood cells from plasma flowing in microchannels is possible by bio-physical effects such as an axial migration effect and Zweifach-Fung bifurcation law. In the present study, subchannels are placed alongside a main channel to collect cells and plasma separately. The addition of a constriction in the main microchannel creates a local high shear force region, forcing the cells to migrate and concentrate towards the centre of the channel. The resulting lab-on-a-chip was manufactured using biocompatible materials. Purity efficiency was measured for mussel and human blood suspensions as different parameters including flow rate and geometries of parent and daughter channels were varied.
Resumo:
This chapter contains sections titled: - Introduction - Microgel preparation - Characterisation of microgels - Properties and applications - Conclusions
Resumo:
The purpose of this investigation was to examine the preparation and characterisation of hexane-in-water emulsions stabilised by clay particles. These emulsions, called Pickering emulsions, are characterised by the adsorption of solid particles at the oil/water (o/w) interface. The development of an elastic film at the o/w interface following the adsorption of colloidal particles helps to promote emulsion stability. Three different solid materials were used: silica sand, kaolin, and bentonite. Particles were added to the liquid mixtures in the range of 0.5–10 g dm−3. Emulsions were prepared using o/w ratios of 0.1, 0.2, 0.3, and 0.4. The effect of sodium chloride, on the stability of the prepared emulsions, was assessed in the range of 0–0.5 mol dm−3. In addition the use of a cationic surfactant hexadecyl-trimethylammonium bromide (CTAB) as an aid to improving emulsion stability was assessed in the concentration range of 0–0.05% (w/v). Characterisation of emulsion stability was realised through measurements of rheological properties including non-Newtonian viscosity, the elastic modulus, G', the loss modulus, G", and complex modulus, G*. The stability of the emulsions was evaluated immediately after preparation and 4 weeks later. Using the stability criteria, that for highly stable emulsions: G' > G" and both G' and G" are independent of frequency (varpi) it was concluded that highly stable emulsions could be prepared using a bentonite concentration of 2% (or more); an o/w ratio greater than 0.2; a CTAB concentration of 0.01%; and a salt concentration of 0.05 M or less—though salt was required.