27 resultados para Microwave-assisted
em Greenwich Academic Literature Archive - UK
Resumo:
Computational results for the microwave heating of a porous material are presented in this paper. Combined finite difference time domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent both on temperature and moisture content. The model was able to reflect the evolution of temperature and moisture fields as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.
Resumo:
The curing of conductive adhesives and underfills can save considerable time and offer cost benefits for the microsystems and electronics packaging industry. In contrast to conventional ovens, curing by microwave energy generates heat internally within each individual component of an assembly. The rate at which heat is generated is different for each of the components and depends on the material properties as well as the oven power and frequency. This leads to a very complex and transient thermal state, which is extremely difficult to measure experimentally. Conductive adhesives need to be raised to a minimum temperature to initiate the cross-linking of the resin polymers, whilst some advanced packaging materials currently under investigation impose a maximum temperature constraint to avoid damage. Thermal imagery equipment integrated with the microwave oven can offer some information on the thermal state but such data is based on the surface temperatures. This paper describes computational models that can simulate the internal temperatures within each component of an assembly including the critical region between the chip and substrate. The results obtained demonstrate that due to the small mass of adhesive used in the joints, the temperatures reached are highly dependent on the material properties of the adjacent chip and substrate.
Resumo:
Computational results for the intensive microwave heating of porous materials are presented in this work. A multi-phase porous media model has been developed to predict the heating mechanism. Combined finite difference time-domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent both on temperature and moisture content. The model was able to reflect the evolution of both temperature and moisture fields as well as energy penetration as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.
Resumo:
Computational results for the microwave heating of a porous material are presented in this paper. Combined finite difference time domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent on both temperature and moisture content. The model was able to reflect the evolution of both temperature and moisture fields as well as energy penetration as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.
Resumo:
This paper describes a Framework for e-Learning and presents the findings of a study investigating whether the use of Blended Learning can fulfill or at least accommodate some of the human requirements presently neglected by current e-Learning systems. This study evaluates the in-house system: Teachmat, and discusses how the use of Blended Learning has become increasingly prevalent as a result of its enhancement and expansion, its relationship to the human and pedagogical issues, and both the positive and negative implications of this reality. [From the Authors]
Resumo:
Developing temperature fields in frozen cheese sauce undergoing microwave heating were simulated and measured. Two scenarios were investigated: a centric and offset placement on the rotating turntable. Numerical modeling was performed using a dedicated electromagnetic Finite Difference Time Domain (FDTD) module that was two-way coupled to the PHYSICA multiphysics package. Two meshes were used: the food material and container were meshed for the heat transfer and the microwave oven cavity and waveguide were meshed for the microwave field. Power densities obtained on the structured FDTD mesh were mapped onto the unstructured finite volume method mesh for each time-step/turntable position. On heating for each specified time-step the temperature field was mapped back onto the FDTD mesh and the electromagnetic properties were updated accordingly. Changes in thermal/electric properties associated with the phase transition were fully accounted for as well as heat losses from product to cavity. Detailed comparisons were carried out for the centric and offset placements, comparing experimental temperature profiles during microwave thawing with those obtained by numerical simulation.
Resumo:
The use of variable frequency microwave technology in curing of polymer materials used in microelectronics applications is discussed. A revolutionary open-ended microwave curing system is outlined and assessed using experimental and numerical approaches. Experimental and numerical results are presented, demonstrating the feasibility of the system
Resumo:
A novel open-ended waveguide cavity resonator for the microwave curing of bumps, underfills and encapsulants is described. The open oven has the potential to provide fast alignment of devices during flip-chip assembly, direct chip attach, surface mount assembly or wafer-scale level packaging. The prototype microwave oven was designed to operate at X-band for ease of testing, although a higher frequency version is planned. The device described in the paper takes the form of a waveguide cavity resonator. It is approximately square in cross-section and is filled with a low-loss dielectric with a relative permittivity of 6. It is excited by end-fed probes in order to couple power preferentially into the TM3,3,k mode with the object of forming nine 'hot-spots' in the open end. Low power tests using heat sensitive film demonstrate clearly that selective heating in multiple locations in the open end of the oven is achievable
Resumo:
Purpose – This paper aims to present an open-ended microwave curing system for microelectronics components and a numerical analysis framework for virtual testing and prototyping of the system, enabling design of physical prototypes to be optimized, expediting the development process. Design/methodology/approach – An open-ended microwave oven system able to enhance the cure process for thermosetting polymer materials utilised in microelectronics applications is presented. The system is designed to be mounted on a precision placement machine enabling curing of individual components on a circuit board. The design of the system allows the heating pattern and heating rate to be carefully controlled optimising cure rate and cure quality. A multi-physics analysis approach has been adopted to form a numerical model capable of capturing the complex coupling that exists between physical processes. Electromagnetic analysis has been performed using a Yee finite-difference time-domain scheme, while an unstructured finite volume method has been utilized to perform thermophysical analysis. The two solvers are coupled using a sampling-based cross-mapping algorithm. Findings – The numerical results obtained demonstrate that the numerical model is able to obtain solutions for distribution of temperature, rate of cure, degree of cure and thermally induced stresses within an idealised polymer load heated by the proposed microwave system. Research limitations/implications – The work is limited by the absence of experimentally derived material property data and comparative experimental results. However, the model demonstrates that the proposed microwave system would seem to be a feasible method of expediting the cure rate of polymer materials. Originality/value – The findings of this paper will help to provide an understanding of the behaviour of thermosetting polymer materials during microwave cure processing.
Resumo:
Heating in an idealised polymer load in a novel open-ended variable frequency microwave oven is numerically simulated using a couple solver approach. The frequency-agile microwave oven bonding system (FAMOBS)is developed to meet rapid polymer curing requirements in microelectronics and optoelectronics manufacturing. The heating of and idealised polymer load has been investigated through numerical modelling. Assessment of the system comprises of simulation of electromagnetic fields and of temperature distribution within the load. Initial simulation results are presented and contrasted with experimental analysis of field distribution
Resumo:
Summary form only given. Currently the vast majority of adhesive materials in electronic products are bonded using convection heating or infra-red as well as UV-curing. These thermal processing steps can take several hours to perform, slowing throughput and contributing a significant portion of the cost of manufacturing. With the demand for lighter, faster, and smaller electronic devices, there is a need for innovative material processing techniques and control methodologies. The increasing demand for smaller and cheaper devices pose engineering challenges in designing a curing systems that minimize the time required between the curing of devices in a production line, allowing access to the components during curing for alignment and testing. Microwave radiation exhibits several favorable characteristics and over the past few years has attracted increased academic and industrial attention as an alternative solution to curing of flip-chip underfills, bumps, glob top and potting cure, structural bonding, die attach, wafer processing, opto-electronics assembly as well as RF-ID tag bonding. Microwave energy fundamentally accelerates the cure kinetics of polymer adhesives. It provides a route to focus heat into the polymer materials penetrating the substrates that typically remain transparent. Therefore microwave energy can be used to minimise the temperature increase in the surrounding materials. The short path between the energy source and the cured material ensures a rapid heating rate and an overall low thermal budget. In this keynote talk, we will review the principles of microwave curing of materials for high density packing. Emphasis will be placed on recent advances within ongoing research in the UK on the realization of "open-oven" cavities, tailored to address existing challenges. Open-ovens do not require positioning of the device into the cavity through a movable door, hence being more suitable for fully automated processing. Further potential advantages of op- - en-oven curing include the possibility for simultaneous fine placement and curing of the device into a larger assembly. These capabilities promise productivity gains by combining assembly, placement and bonding into a single processing step. Moreover, the proposed design allows for selective heating within a large substrate, which can be useful particularly when the latter includes parts sensitive to increased temperatures.
Resumo:
A physically open, but electrically shielded, microwave open oven can be produced by virtue of the evanescent fields in a waveguide below cutoff. The below cutoff heating chamber is fed by a transverse magnetic resonance established in a dielectric-filled section of the waveguide exploiting continuity of normal electric flux. In order to optimize the fields and the performance of the oven, a thin layer of a dielectric material with higher permittivity is inserted at the interface. Analysis and synthesis of an optimized open oven predicts field enhancement in the heating chamber up to 9.4 dB. Results from experimental testing on two fabricated prototypes are in agreement with the simulated predictions, and demonstrate an up to tenfold improvement in the heating performance. The open-ended oven allows for simultaneous precision alignment, testing, and efficient curing of microelectronic devices, significantly increasing productivity gains.
Resumo:
Thawing of a frozen food product in a domestic microwave oven is numerically simulated using a coupled solver approach. The approach consists of a dedicated electromagnetic FDTD solver and a closely coupled UFVM multi-physics package. Two overlapping numerical meshes are defined; the food material and container were meshed for heat transfer and phase change solution, whilst the microwave oven cavity and waveguide were meshed for the microwave irradiation. The two solution domains were linked using a cross-mapping routine. This approach allowed the rotation of the food load to be captured. Power densities obtained on the structured FDTD mesh were interpolated onto the UFVM mesh for each timestep/turntable position. The UFVM solver utilised the power density data to advance the temperature and phase distribution solution. The temperature-dependant dielectric and thermo-physical properties of the food load were updated prior to revising the electromagnetic solution. Changes in thermal/electric properties associated with the phase transition were fully accounted for as well as heat losses from product to cavity. Two scenarios were investigated: a centric and eccentric placement on the turntable. Developing temperature fields predicted by the numerical solution are validated against experimentally obtained data. Presented results indicate the feasibility of fully coupled simulations of the microwave heating of a frozen product. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
Comparison of the performance of a conventional convection oven system with a dual-section microwave system for curing thermosetting polymer encapsulant materials has been performed numerically. A numerical model capable of analysing both the convection and microwave cure processes has been developed and is breifly outliines. The model is used to analyse the curing of a commercially available encapsulant material using both systems. Results obtained from numerical solutions are presented, confirming that the VFM system enables the cure process to be carried out far more rapidly than with the convection oven system. This capability stems from the fundamental heating processes involved, namely that microwave processing enables the heating rate to be varied independently of the material temperature. Variations in cure times, curing rates, maximum temperatures and residual stresses between the processes are fully discussed.