7 resultados para Bifurcation diagram

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the architecture of the knowledge based system (KBS) component of Smartfire, a fire field modelling tool for use by members of the fire safety engineering community who are not expert in modelling techniques. The KBS captures the qualitative reasoning of an experienced modeller in the assessment of room geometries, so as to set up the important initial parameters of the problem. Fire modelling expertise is an example of geometric and spatial reasoning, which raises representational problems. The approach taken in this project is a qualitative representation of geometric room information based on Forbus’ concept of a metric diagram. This takes the form of a coarse grid, partitioning the domain in each of the three spatial dimensions. Inference over the representation is performed using a case-based reasoning (CBR) component. The CBR component stores example partitions with key set-up parameters; this paper concentrates on the key parameter of grid cell distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recognition of the differences of scale between the welding pool and the heat affected zone along the welding line on one hand, and the overall size of the components being welded on the other, a local-global finite element approach was developed for the evaluation of distortions in laser welded shipbuilding parts. The approach involves the tandem use of a 'local' and a 'global' step. The local step involves a three-dimensional finite element model for the simulation of the laser welding process using the Sysweld finite element code, which takes into account thermal, metallurgical, and mechanical aspects. The simulation of the laser welding process was performed using a non-linear heat transfer analysis, based on a keyhole formation model, and a coupled transient thermomechanical analysis, which takes into account metallurgical transformations using the temperature dependent material properties and the continuous cooling transformation diagram. The size and shape of the keyhole used in the local finite element analysis was evaluated using a keyhole formation model and the Physica finite volume code. The global step involves the transfer of residual plastic strains and the stiffness of the weld obtained from the local model to the global analysis, which then provides the predicted distortions for the whole part. This newly developed methodology was applied to the evaluation of global distortions due to laser welding of stiffeners on a shipbuilding part. The approach has been proved reliable in comparison with experiments and of practical industrial use in terms of computing time and storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the use of a blackboard architecture for building a hybrid case based reasoning (CBR) system. The Smartfire fire field modelling package has been built using this architecture and includes a CBR component. It allows the integration into the system of qualitative spatial reasoning knowledge from domain experts. The system can be used for the automatic set-up of fire field models. This enables fire safety practitioners who are not expert in modelling techniques to use a fire modelling tool. The paper discusses the integrating powers of the architecture, which is based on a common knowledge representation comprising a metric diagram and place vocabulary and mechanisms for adaptation and conflict resolution built on the Blackboard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the challenges encountered in modelling biofluids in microchannels. In particular blood separation implemented in a T-microchannel device is analysed. Microfluids behave different from the counterparts in the microscale and a different approach has been adopted here to model them, which emphasize the roles of viscous forces, high shear rate performance and particle interaction in microscope. A T-microchannel design is numerically analysed by means of computational fluid dynamics (CFD) to investigate the effectiveness of blood separation based on the bifurcation law and other bio-physical effects. The simulation shows that the device can separate blood cells from plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The separation of red blood cells from plasma flowing in microchannels is possible by bio-physical effects such as an axial migration effect and Zweifach-Fung bifurcation law. In the present study, subchannels are placed alongside a main channel to collect cells and plasma separately. The addition of a constriction in the main microchannel creates a local high shear force region, forcing the cells to migrate and concentrate towards the centre of the channel. The resulting lab-on-a-chip was manufactured using biocompatible materials. Purity efficiency was measured for mussel and human blood suspensions as different parameters including flow rate and geometries of parent and daughter channels were varied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an analysis of biofluid behavior in a T-shaped microchannel device and a design optimization for improved biofluid performance in terms of particle liquid separation. The biofluid is modeled with single phase shear rate non-Newtonian flow with blood property. The separation of red blood cell from plasma is evident based on biofluid distribution in the microchannels against various relevant effects and findings, including Zweifach-Fung bifurcation law, Fahraeus effect, Fahraeus-Lindqvist effect and cell free phenomenon. The modeling with the initial device shows that this T-microchannel device can separate red blood cell from plasma but the separation efficiency among different bifurcations varies largely. In accordance with the imbalanced performance, a design optimization is conducted. This includes implementing a series of simulations to investigate the effect of the lengths of the main and branch channels to biofluid behavior and searching an improved design with optimal separation performance. It is found that changing relative lengths of branch channels is effective to both uniformity of flow rate ratio among bifurcations and reduction of difference of the flow velocities between the branch channels, whereas extending the length of the main channel from bifurcation region is only effective for uniformity of flow rate ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofluid behaviour in microchannel systems is investigated in this paper through the modelling of a microfluidic biochip developed for the separation of blood plasma. Based on particular assumptions, the effects of some mechanical features of the microchannels on behaviour of the biofluid are explored. These include microchannel, constriction, bending channel, bifurcation as well as channel length ratio between the main and side channels. The key characteristics and effects of the microfluidic dynamics are discussed in terms of separation efficiency of the red blood cells with respect to the rest of the medium. The effects include the Fahraeus and Fahraeus-Lindqvist effects, the Zweifach-Fung bifurcation law, the cell-free layer phenomenon. The characteristics of the microfluid dynamics include the properties of the laminar flow as well as particle lateral or spinning trajectories. In this paper the fluid is modelled as a single-phase flow assuming either Newtonian or Non-Newtonian behaviours to investigate the effect of the viscosity on flow and separation efficiency. It is found that, for a flow rate controlled Newtonian flow system, viscosity and outlet pressure have little effect on velocity distribution. When the fluid is assumed to be Non-Newtonian more fluid is separated than observed in the Newtonian case, leading to reduction of the flow rate ratio between the main and side channels as well as the system pressure as a whole.