14 resultados para saberes
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Este trabajo centra su atención en la construcción de saberes matemáticos en un ambiente de colaboración, en el que se privilegia la interacción entre los participantes, la confrontación y la negociación. Se hace una descripción de la problemática que se vive en el aprendizaje de las matemáticas y de la necesidad de innovar a través de situaciones donde el contenido matemático es relevante para el alumno y la sociedad. De igual modo se hace una descripción sucinta acerca de que esta manera de construir saberes incluye el desarrollo de competencias matemáticas, las consideradas en el plan de estudio de educación secundaria 2006. Esta descripción contiene actividades para un taller considerando el eje sobre el manejo de la información y una versión de principios para orientar su ejecución.
Resumo:
El presente artículo recopila la experiencia de expertos en la etnomatemática, de un grupo de discusión en RELME 27. Sus cuestionamientos se fundamentan, en la etnomatemática y el impacto de esta en el currículo escolar. Se toma en cuenta las características sociales del sistema educativo latinoamericano, los objetivos de desarrollo del milenio y el impacto de ambos, sobre la educación matemática de los pueblos originarios. Se plantean retos futuros y una visión sobre la recuperación de los saberes matemáticos. Metodológicamente se sustenta como una investigación de enfoque cualitativo, con diseño de teoría fundamental, donde sus datos se analizan por codificación abierta axial.
Resumo:
Discutimos neste trabalho resultados relativos a mudanças metodológicas realizadas pela prova escrita para alunos de uma escola brasileira. Partimos da experiência docente aliada ao estudo de pesquisas científicas que consideram a prova um momento de aprendizado. Porém acreditamos que isso pode ser potencializado por meio de prova escrita feita com duplas formadas por livre escolha dos alunos, mas duas provas distintas para propiciar a cada dupla o diálogo. Além disso, as duplas devem ser escolhidas com antecedência, sendo a nota obtida pela média aritmética das notas de cada um dos alunos.
Resumo:
En la Educación Matemática es ampliamente reconocida la importancia de la investigación de los factores que influyen o generan procesos de aprendizaje, que ayuden a los estudiantes a construir de manera significativa los objetos matemáticos. En el marco de esta propuesta, se reconoce que la investigación actual de carácter cognitivo en educación matemática, evidencia que los problemas de comprensión que presentan los estudiantes tienen que ver tanto con el contenido enseñado, como con la complejidad de la construcción de los saberes, es decir, con los funcionamientos propios que constituyen la parte operativa del pensamiento.
Resumo:
Com o presente trabalho buscou-se articular saberes de Matemática e Biologia presentes no Ensino Médio brasileiro. Na tessitura teórica, destacaram-se Morin (conhecimento como elaboração complexa), Machado (as redes de saberes) e Lévy (metáfora do hipertexto). Consideramos como eixos para a pesquisa: 1) Possibilitar ações didáticas envolvendo de forma complexa Biologia e Matemática; 2) Biologia e Matemática como objetos de atuação do professor e instrumentos para o estudante elaborar conhecimento. A análise dos resultados permitiu a identificação de duas categorias de integração entre Biologia e Matemática no Ensino Médio: 1) instrumentos matemáticos utilizados para descrever fenômenos biológicos; 2) a Matemática utilizada para a resolução de problemas da Biologia. O trabalho apresenta-se como estudo teórico que apontou temas dos ensinos de Biologia e Matemática no Ensino Médio favorecedores de articulações e ampliação do alcance didático dessas disciplinas no Nível Médio de ensino.
Resumo:
Se considera que las nociones matemáticas tienen su origen en las ideas germinales que han surgido en diferentes momentos histórico-epistemológicos de la matemática. En la didáctica de la matemática las nociones tienen un papel preponderante como elementos articuladores de los saberes matemáticos que están en juego. En este trabajo se dan algunas evidencias del comportamiento epistemológico acerca de dos nociones: la promediación y la linealidad, las cuales no se perciben en la escuela en su estatus metamatemático. Aparecen en prácticamente todas las etapas escolares y su conceptualización en los diferentes niveles educativos es abordada de forma desarticulada, lo que propicia aprendizajes poco significativos.
Resumo:
Una secuencia didáctica se entiende como un sistema de reflexión y actuación del profesor en donde se explicitan aquellos aspectos del quehacer didáctico fundamentales a toda acción de enseñanza y aprendizaje, y en el que participan estudiantes, docentes, saberes y el entorno. En la secuencia didáctica a la que se refiere esta ponencia, propuesta para la enseñanza de la semejanza, los fractales serán el recurso a través del cual se identificarán las características y propiedades de la semejanza. En la planeación se tuvieron en cuenta la relación intrafigural y las transformaciones geométricas propuestas por Lemonidis, como referente teórico para analizar el concepto de semejanza.
Resumo:
A aprendizagem matemática não ocorre simplesmente pela transmissão de saberes do professor para o aluno, uma vez que é possível aprender matemática com tarefas que incentivem a construção do conhecimento que poderá favorecer o prazer pela descoberta, promover a autonomia e incentivar a comunicação. Além disso, o processo de construção do conhecimento leva o aluno a pensar mais, raciocinar mais, potencializando, dessa forma, um nível de conhecimento bem alicerçado. Nesse sentido, a Resolução de Problemas se apresenta como uma perspectiva metodológica que tem sido reconhecida mundialmente como uma meta fundamental no ensino-aprendizagem da Matemática. Assim, o presente texto pretende apresentar a Metodologia de Ensino- Aprendizagem-Avaliação de Matemática através da Resolução de Problemas como uma proposta didática para se trabalhar em sala de aula.
Resumo:
En la presente investigación se problematiza la organización de saberes matemáticos asociados a contenidos del Precálculo desde una perspectiva socioepistemológica, en la que se asume que los procesos de construcción, difusión e institucionalización de conocimiento se corresponden con un contexto específico. Por ende se analizaron variables socioculturales de contexto asociadas al uso y construcción de conocimiento matemático en ámbitos no escolares y en el escenario escolar. En éstos se reconoció el papel de la práctica, la dimensión social de la matemática y la actividad humana como condiciones socioculturales para la reorganización y construcción de saberes matemáticos en Precálculo.
Resumo:
El presente trabajo de investigación tiene por objetivo la obtención de indicadores para la organización de saberes matemáticos correspondientes al área de Precálculo, Geometría y Álgebra de nivel medio. Para la consecución de éste, se realiza en primera instancia un estudio documental el cual permitiera generar un estado del arte de propuestas didácticas generadas en Matemática Educativa en la última década, seguido de un estudio descriptivo cuyo objetivo es identificar aquellos elementos que caracterizan las propuestas como favorecedores de la construcción del conocimiento matemático. Particularmente nos centraremos en los resultados obtenidos al momento en el área de Precálculo, entre los cuales se tiene que las propuestas didácticas parecen tener en común el que la construcción del conocimiento se dé a través de la práctica humana y el carácter científico de los conocimientos matemáticos, como son: la predicción, la visualización y la modelación. La tecnología ya no es un recurso para el profesor sino una herramienta para el estudiante.
Resumo:
Se aborda, desde una perspectiva socioepistemológica, la construcción del conocimiento y el desarrollo del pensamiento proporcional buscando generar espacios de reflexión y de interacción con el profesorado y el estudiantado que posibiliten la resignificación del conocimiento institucionalizado. Recurre entre otras fuentes y técnicas, al análisis de textos didácticos clásicos y contemporáneos, con el objeto de visualizar la naturaleza y evolución de los saberes matemáticos y escolares en juego, y, decidir aspectos necesarios a los diseños de secuencias didácticas en orden a favorecer la significación de fracciones, razones y proporciones como conceptos-herramientas en el estudiantado en el ámbito de la proporcionalidad. Tiene el objetivo de comprender de qué manera las prácticas que toman lugar en el aula, contribuyen al desarrollo del pensamiento proporcional de los estudiantes, en los niveles 5º al 10º de la escolaridad obligatoria.
Resumo:
Las distancias entre saberes de la vida diaria, los escolares y los eruditos, afincan sus raíces en matrices de sentido de epistemes propias. Tal ocurre para las nociones de velocidad y tiempo de la matemática del cambio. Una didáctica crítica es desafiada a deconstruirlos, desentrañando su presencia en el sentido común del estudiantado y en los saberes escolares de los que debe apropiarse éste, de modo de proporcionar antecedentes para diseñar y validar puentes de diálogo entre estos cuerpos de saberes. Para colaborar en esta línea, se presentan matrices de sentido para las nociones de velocidad y de tiempo obtenidas en investigaciones de la Matemática del Cambio.
Resumo:
Diversas investigaciones se interesan por la inserción de los “conocimientos previos” de los estudiantes en el proceso de aprendizaje de las matemáticas, considerándolos como bases iniciales de significados que deben ser sustituidos por medio de la instrucción “formal”. A diferencia de lo anterior, el propósito de la investigación es legitimar los saberes que se encuentran en el cotidiano. Para ello, se conforma, desde la socioepistemología, la categoría del cotidiano del ciudadano que resalta una función social particular del conocimiento matemático. Para la conformación de la evidencia empírica, se da cuenta de los usos de las gráficas en talleres de divulgación científica, evidenciando cómo el cotidiano brinda elementos funcionales que podrían conformar parte de un rediseño del discurso matemático escolar.
Resumo:
La calculadora graficadora como herramienta tecnológica ofrece la posibilidad de despertar el interés del estudiante y estimular su entendimiento, y en este trabajo se analiza la puesta en escena de una situación didáctica como nota de clase (Lluck, 2004). Conformada con una secuencia de actividades para ser trabajadas por los alumnos dentro y fuera del aula. Esta secuencia se diseña de tal forma que al ponerla en práctica es posible hacer matemáticas, considerando que dichos saberes matemáticos son necesarios para ser un ciudadano que se desempeñe con éxito en su labor y comprenda la importancia de la matemática en su vida actual y futura.