3 resultados para prisma mínimo

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la primera parte del artículo el autor muestra que las fórmulas de volumen del prisma, pirámide y esfera no se justifican adecuadamente a los estudiantes. Esta afirmación la sustenta a partir de un análisis sucinto de lo que aparece en los textos que tradicionalmente dominan la enseñanza y de su experiencia como docente. En la segunda parte da a conocer una propuesta para construir las fórmulas del volumen de un prisma y una pirámide cualquiera; del área del círculo y la semiesfera y con base en esta última, obtener la del volumen de la esfera. Termina con la descripción de las ventajas de la estrategia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hubiéramos deseado enfocar este artículo desde otra perspectiva. Su gestación había deambulado por otros derroteros. Es cierto que pensábamos escribir sobre el tremendo paréntesis que la historiografía clásica impone, en el campo de la matemáticas, al final de la edad media hispana y al llamado renacimiento, también en su versión peninsular. De la matemática «árabe» ya habíamos hablado en artículos anteriores, pero, una vez más, los medios de comunicación pretenden adiestrarnos en el lenguaje del odio, presentándolo bajo el prisma del choque cultural. Porque, una vez más, los paladines de la justicia y la democracia andan bombardeando un país musulmán respondiendo con iniquidad a la iniquidad. Razones más que suficientes, en nuestro caso, para cultivar la admiración, para revisar nuestra cultura a la luz de sus aportaciones. Las de «ellos», que fueron las nuestras, porque formábamos parte integrante de «esa» comunidad. Máxime cuando uno lee con dolor alegatos tan detestables –por racistas– y tan tendenciosos –por intencionadamente desinformados– como el de la señora Fallaci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mi primer contacto con los poliedros flexibles fue en el Seminario de Nicolás Bourbaki, en febrero de 1978, cuando N. H. KUIPBR sorprendió a la audiencia con un enorme poliedro de aluminio que resultaba ser flexible. Allí planteó, entre otras, las siguientes preguntas: ¿cuál es el número mínimo de vértices para una esfera poliédrica flexible?