3 resultados para grupo infantil
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Ernest (1989) afirmó que las creencias y concepciones de un profesor regulan su práctica de enseñanza en el aula. De esta manera, si se desean cambios en las prácticas de los profesores de matemáticas, al parecer, deben cambiar sus creencias y concepciones. Al respecto se generó la pregunta: ¿es posible cambiar las creencias y concepciones de los profesores? (Thompson, 1991). Las investigaciones de Senger (1999), D’Amore y Fandiño (2004) y Pehkonen (2006), entre otras, han arrojado resultados positivos acerca de que las creencias y concepciones de los profesores pueden cambiar. En este artículo se presentarán los resultados de una investigación cuyo objetivo primordial fue identificar y caracterizar cambios en las concepciones de los estudiantes para profesor de sexto semestre de Licenciatura en Educación Básica con Énfasis en Matemáticas (Bogotá, Colombia). En esencia se presentarán resultados que muestran las concepciones iniciales de los estudiantes y su cambio al finalizar la intervención.
Resumo:
Se estudia el proceso que va desde las acciones reales y efectivas de añadir y quitar hasta la construcción de las operaciones aritméticas de suma y resta por parte de los escolares de 3, 4 y 5 años. El esquema lógico-matemático subyacente es el de transformaciones. Para que se den estas operaciones deben presentarse simultáneamente dicho esquema y la cuantificación, siendo esa simultaneidad la que lleva a las relaciones numéricas. Teniendo en cuenta que el origen de las operaciones de suma y resta en el escolar está supeditado a las acciones de añadir y quitar que se desarrollan en un proceso de construcción mental de los esquemas lógicos-matemáticos de transformaciones de cantidades discretas, se propone un plan de actuación en el aula de educación infantil mediante un tratamiento sistemático de dichas operaciones.
Resumo:
En este documento se presenta el diseño de una secuencia de tareas basadas en creación de problemas y uso de material concreto, para introducir el concepto de grupo como estructura algebraica en un curso de álgebra abstracta del plan de estudios de enseñanza de la matemática de la Universidad de Costa Rica. Se muestran algunas evidencias que indican que con esto se logra, no solo reafirmar los conocimientos matemáticos, sino también que los futuros docentes desarrollen la habilidad de formular problemas que respondan a un objetivo específico y a su vez reflexionen sobre la actividad matemática.