7 resultados para ejericicio aeróbico, fuerza

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arquímedes es el matemático y científico de todos los tiempos, desde la Antigüedad hasta nuestros días; en él se personifican variedad de métodos para resolver situaciones matemáticas y científicas, además de ideas fundamentales que han acompañado la evolución de muchos conceptos de las matemáticas y las ciencias; entre ellas están las ideas sobre el cálculo integral, la geometría de los cuerpos redondos, la cuadratura de la parábola, la conceptualización sobre espejos y poleas, la palanca y las ideas sobre flotación de los cuerpos, a través de la experimentación. Es por ello que, siguiendo algunas de sus rutas, se desarrollará el taller “Algunas ideas matemáticas y físicas de Arquímedes”, mostrando a través de algunas de estas experiencias desarrollos metodológicos, e integración de ideas de las matemáticas con otras áreas del conocimiento científico. Además, estos métodos permiten desarrollar ideas, que pueden ser aplicadas en procesos de aprendizaje de algunos conceptos de las matemáticas, que son enseñados en la Educación Básica y Media de nuestros jóvenes. Asimismo, en este taller mostraremos algunos senderos de aprendizaje de las matemáticas, integrados a las ciencias naturales, siguiendo algunos métodos arquimedianos, en ambientes de la metodología de Aula Taller, donde el aprender haciendo, el uso de material tangible, el apoyo en guías de trabajo, el construir las ideas y los conceptos son, es la clave el conocimiento. Esto lo compartiremos con los maestros a través del estudio de los cuerpos redondos y las ideas de flotación de los cuerpos. Cabe aclarar, además que, ni la metodología ni el tema a trabajar han sido explorados en nuestro país. Es por ello que queremos compartirlo, ya que es una experiencia que hemos vivido en otros espacios y que ha tenido un buen resultado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En educación matemática el razonamiento cobra especial importancia, al mismo tiempo que su uso puede conducir a opiniones contrapuestas. Entender y dominar la demostración de un resultado matemático ayuda a su comprensión, facilita su empleo en el estudio de otras proposiciones y contribuye a la consolidación de un lenguaje matemático. Pero ¿puede sacarse partido a una demostración si se desconoce qué es, qué papel juega, y dónde reside su fuerza? ¿Deben frenarse los intentos de los alumnos de justificar a su modo los resultados matemáticos, ó modelarlos y sacarles mejor rendimiento? ¿No es mejor una aproximación medianamente fundada pero entendida, que aseveraciones bien formalizadas pero sin significado? Si además se considera la aportación que las nuevas tecnologías realizan a la enseñanza, es necesario una reflexión acerca de cómo se ve afectada, si es que se altera, la forma de validar el conocimiento matemático en el aula, además de establecer cuál es el rigor y la formalidad de las justificaciones que se desarrollan con estos instrumentos. En este reporte, se realiza un acercamiento teórico a diferentes modos de justificar las proposiciones matemáticas en el aula, y al papel que desempeña la tecnología en esta tarea. También se describe una experimentación llevada a cabo con profesores de matemáticas en formación en la que se analizaron las concepciones que tenían acerca del valor educativo que posee la calculadora TI-92 para, de algún modo, validar dichas proposiciones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este artículo es respuesta a la pregunta formulada por Jeremy Kilpatrick, "¿Qué dicen la investigación y la teoría acerca de la enseñanza y el aprendizaje de las matemáticas que se plasman en los documentos de los Estándares [del NCTM] y en varias de las críticas hechas a ellos?" (Kilpatrick, 1997). Me centro aquí en aquellas necesidades de los alumnos, que según las teorías disponibles, son la fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. En este artículo se identifican diez de tales necesidades. Mi análisis se basa en el supuesto de que todas ellas son universales aunque se puedan expresar de modos diferentes en diferentes individuos y en diferentes edades. Para cada una de las diez necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto? A lo largo del artículo, señalo ciertos dilemas inherentes al proyecto de enseñar matemáticas y sostengo que aunque algunos de los problemas no parezcan solubles, quizás su impacto se pueda reducir considerablemente con sólo mantenernos conscientes de su existencia. Este artículo se ha dividido en dos partes para su presentación en la Revista. Aquí se incluye lo referente a las cinco primeras necesidades identificadas; en el siguiente número se expondrá lo relativo a las otras necesidades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta es la segunda parte del artículo1 cuya presentación se inició en el número anterior de esta revista (pp. 95-140). Se incluye aquí lo referente a otras cinco necesidades de los alumnos, que según las teorías disponibles, son una fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. Para cada una de tales necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto?.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El discurso escolar del contenido de programación lineal, en los establecimientos educacionales chilenos, se ha convertido en un proceso mecánico y sin sentido para el estudiante. Para revertir esta mirada, se intenta dar respuesta a la siguiente interrogante ¿Cuáles son los significados reales que emergen y dan fuerza a la programación lineal? Se evidenciará el estudio del rol actual de la programación lineal y los procesos históricos de su surgimiento, con el fin de identificar aquellos factores que le dan fuerza a su desarrollo y construcción.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La convincente fuerza de las imágenes y su belleza artesanal son habitual y lamentablemente desaprovechadas en las aulas. Las pruebas visuales no demuestran -eso dice el rigor puritano- pero asientan cimientos, aportan elegancia plástica y ayudan a la motivación. Desde primaria hasta la universidad, la enseñanza de las matemáticas está planificada bajo un obsesivo punto de vista que prima lo general sobre lo particular. Sin embargo, una didáctica humanista, que permita al alumnado construir y diseñar, sólo es posible desde un buen conocimiento de las propiedades individuales de los objetos matemáticos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Después de relatar la experiencia vivida al cruzar el Ganges en un bote me planteo que curva escribe una barca al cruzar un río, en principio tiene la intención de ser una línea recta, pero la fuerza de la corriente lo impide por débil que sea. La búsqueda de una función cuenta gráfica conocida es una trayectoria constituye un excelente ejemplo de movilización matemática simple y aplicación de conceptos fundamentales del cálculo diferencial.