10 resultados para ciclo heteroclínico infinito
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En el presente trabajo nos interesa principalmente determinar qué concepciones sobre el infinito han desarrollado estudiantes de último año de secundaria y estudiantes universitarios de primer año. Aunque este concepto no aparece como un contenido específico del currículo de matemáticas, sobre él se desarrollan diferentes concepciones en escenarios no escolares que de una u otra manera afectan la construcción de conceptos matemáticos relacionados con él. Además, nos interesa confrontar las ideas que surgen cuando se habla de infinito en lo grande e infinito en lo pequeño, ya que aunque se trata de la construcción de un mismo concepto sus concepciones emergen de manera diferente en la mente de los individuos (Núñez, 1997). Lo que se puede justificar considerando que es más fácil comprender el infinito en lo grande como un proceso que continua sin parar y que no tiene fin, que el infinito en lo pequeño, en donde a pesar de conservarse el hecho de un proceso sin fin, aparece una nueva situación que sugiere que dicho proceso tiene un límite.
Resumo:
Presentamos una propuesta para trabajar los fractales en educación secundaria. Proponemos el uso de los fractales como medio para que los alumnos repasen y trabajen, de una forma original y creativa, otros conceptos geométricos del currículo relacionados con los fractales. Durante el taller mostraremos una idea intuitiva de fractal así como el modo de construir algunos de ellos de manera sencilla y entretenida. En las construcciones utilizaremos materiales accesibles y de fácil manejo como el papel, la regla, el compás y las tijeras.
Resumo:
Esta es una experiencia de aula llevada a cabo en el ciclo 2, la cual estuvo a cargo de dos profesoras practicantes quienes promovieron la estructura multiplicativa hasta identificar los múltiplos y divisores de un número, dicha experiencia se rigió desde lo metodológico por la estructura propuesta por el grupo DECA (); a nivel conceptual por varios autores como Verganud, Maza (1991),y otros; y finalmente el marco legal por los Estándares Básicos (2007) y los Lineamientos (1998. Se realizaron una serie de actividades que promovieron el reconocimiento y conceptualización de la división como reparticiones equitativas, y promovieron la reflexión tanto de los estudiantes como de las profesoras, en torno a la utilidad, facilidad y aceptación de las actividades para la comprensión de los estudiantes.
Resumo:
En este trabajo se presenta la evolución del concepto de infinito y algunas relaciones con otros desarrollos de las matemáticas. También presento el hecho de que de varios axiomas intuitivos podemos obtener proposiciones que ya no nos resultan tan evidentes; esto se sustenta con datos experimentales. Discuto la relación entre la igualdad 0.999...=1 y el concepto de infinito; y la posibilidad de usar el concepto de infinitesimal en cálculo. A partir de esta información, presento algunas consideraciones de importancia para la didáctica de las matemáticas.
Resumo:
Es bien sabido en el ámbito académico que muchos de los aspirantes a ingresar a los estudios de educación superior suelen tener preferencias por algunas áreas particulares, lo cual refleja un notable desequilibrio en algunas áreas del conocimiento, siendo la más afectada las Ciencias Básicas. Por tanto, este artículo analiza el perfil e inclinación vocacional en matemáticas de los estudiantes que ingresan a la educación superior. La experiencia se llevó a cabo con los estudiantes invitados al programa de Ciclo de Iniciación Universitaria (CIU) de la cohorte 2012, de la Universidad Simón Bolívar (USB), Sede Sartenejas, Venezuela. Se seleccionó una muestra de 108 estudiantes, a los cuales se les administro una encuesta diseñada para verificar su perfil e inclinación vocacional con hincapié en el área de matemáticas. Como resultados se observó, que considerando aspectos relacionados con las matemáticas de Bachillerato (Tercera Etapa de Educación Básica y Educación Media Diversificada y Profesional) como: desempeño, dominio, asistencia y preparación de los estudiantes, contribución a su futura carrera, desempeño y asistencia de los profesores, se pudo estimar su perfil en matemáticas y obtener una clasificación porcentual de: Deficiente 4%, Regular 13%, Aceptable 23%, Bueno 35% y Excelente 25%. Además, los datos mostraron que la inclinación vocacional del grupo favoreció a las carreras pertenecientes al área de ingeniería (72%). La investigación permitió concluir que: los datos recabados revelan que a pesar que los estudiantes tienen un perfil en matemáticas bueno, todavía no es suficiente para responder a las exigencias de la educación superior. También surge la necesidad de facilitar información detallada a los estudiantes desde sus estudios de Bachillerato, con la finalidad de orientarlos y prepararlos como futuros candidatos a una carrera relacionada con la profesión de matemáticas, despertando así en los estudiantes interés por estas carreras tan desfavorecidas y afectadas por el desequilibrio académico.
Resumo:
Los educadores estadísticos consideran que la alfabetización estadística es un requisito indispensable para entender el entorno y la información disponible, para evaluar críticamente esa información y para tomar decisiones en situaciones de incertidumbre informadas y soportadas en argumentos. El ciclo investigativo PPDAC —Problema, Plan, Datos, Análisis y Conclusiones— es una propuesta para organizar la clase de estadística, con la que se puede promover el razonamiento estadístico y la formación de una cultura estadística. Como organizador de la clase, se constituye en un ambiente propicio para contribuir a la formación estadística, con procesos de participación que impliquen aprendizajes colaborativos. En esta conferencia se amplían y ejemplifican estos temas.
Resumo:
El presente trabajo forma parte de una investigación en la línea de la construcción social del conocimiento. El tema central de este reporte es la construcción escolar del infinito y las dificultades que éste concepto presenta debido a su origen sociocultural por un lado y matemático por otro. Se produce entonces un choque entre esos dos infinitos: el construido socialmente y desconocido por la escuela, y el matemático, que se utiliza en la escuela, pero es desconocido por los alumnos. Para indagar sobre la naturaleza del infinito con que se trabaja en el aula, se presenta y analiza una actividad, centrada en el estudio de funciones, y en particular de la existencia y cálculo de asíntotas que fue llevada a cabo con alumnos de escuela media. Las respuestas demuestran que el infinito construido fuera de la escuela sigue marcando en ellos la forma en que el infinito funciona y que el infinito matemático les presenta sólo conflictos y dudas.
Resumo:
Este trabajo presenta una experiencia realizada con cuatro grupos de alumnos provenientes de dos escuelas locales pertenecientes a noveno año de la EGB y a primer año de la Educación Polimodal. En el mismo se investiga la construcción de la idea de infinito mediante la elaboración del fractal copo de nieve. Se analizan logros y dificultades. Los fractales permiten un acercamiento entre las estructuras analíticas y las formaciones gráficas que muestran los procesos iterativos que repiten infinitamente procesos finitos. Dichos procesos permiten obtener una figura autosemejante. La visualización de estos objetos permite la comprensión de los procesos de cambios de acuerdo a la transformación de la misma figura como así también cuestionarse el por qué de dicho cambio y si el mismo es o no controlable.
Resumo:
En este trabajo se muestra la implementación, los resultados y las conclusiones de una prueba piloto para evaluar el valor propedéutico del aprendizaje matemático de todo el ciclo medio, teniendo en cuenta los requerimientos del ingreso universitario.
Un problema curioso para la comprensión de las determinaciones del tipo infinito e infinito negativo
Resumo:
Muchos alumnos de cursos posteriores al segundo grado de BUP tienen a nivel de información, el conocimiento de los límites del tipo infinito y menos infinito. Saben que son indeterminadas, pero en principio, el concepto no está suficientemente integrado en su estructura racional. Para corregir esto, les sugiero la resolución del siguiente problema, que no recuerdo de donde lo tomé o a quién se lo oí.