21 resultados para buen (os) vivir (es)

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teniendo en cuenta que la educación tradicional es vista como un modelo pedagógico que entre otras: i) se enfoca en desarrollar en los estudiantes conocimientos algorítmicos, ii) hace un énfasis en la ejercitación de procedimientos, iii) no tiene en cuenta el desarrollo social del individuo dentro de una comunidad y tampoco se enfoca en el proceso que tiene un estudiante al desarrollar una actividad con determinado objeto matemático; hoy en día se propende por buscar perspectivas que le permitan a los estudiantes encontrarle sentido a las actividades que el profesor lleva al aula. A la luz de lo anterior, en Colombia han surgido diversas tendencias que han buscado la renovación pedagógica, didáctica y conceptual en la educación escolar, enmarcadas –la mayoría de estas propuestas– dentro de la idea de que los estudiantes se relacionen directamente con el conocimiento, mientras que el profesor toma una postura de orientador del proceso de aprendizaje del estudiante. Teniendo en cuenta lo anterior, muchos profesores han buscado cambiar sus prácticas tradicionales de enseñanza, un ejemplo de ello lo encontramos en el colectivo de profesores de la Institución Educativa Distrital Colegio Paulo Freire de la localidad de Usme (Bogotá, Colombia); donde los profesores –en concordancia con las ideas del pedagogo Paulo Freire– comparten, como parte de su proyecto educativo, el hecho de ver a la enseñanza como un proceso que debe generar en los estudiantes una comprensión crítica de la realidad social, política y económica en la que él está inmerso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expongo una conceptualización de aprendizaje desde la teoría de la práctica social que se concreta en una propuesta sobre cómo ver el aprendizaje de la demostración en geometría euclidiana plana. Las ideas se ilustran con fragmentos de la actividad académica realizada por estudiantes de segundo semestre de Licenciatura en Matemáticas. La conferencia está dirigida a futuros profesores, profesores de matemáticas de secundaria y formadores de docentes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arquímedes es el matemático y científico de todos los tiempos, desde la Antigüedad hasta nuestros días; en él se personifican variedad de métodos para resolver situaciones matemáticas y científicas, además de ideas fundamentales que han acompañado la evolución de muchos conceptos de las matemáticas y las ciencias; entre ellas están las ideas sobre el cálculo integral, la geometría de los cuerpos redondos, la cuadratura de la parábola, la conceptualización sobre espejos y poleas, la palanca y las ideas sobre flotación de los cuerpos, a través de la experimentación. Es por ello que, siguiendo algunas de sus rutas, se desarrollará el taller “Algunas ideas matemáticas y físicas de Arquímedes”, mostrando a través de algunas de estas experiencias desarrollos metodológicos, e integración de ideas de las matemáticas con otras áreas del conocimiento científico. Además, estos métodos permiten desarrollar ideas, que pueden ser aplicadas en procesos de aprendizaje de algunos conceptos de las matemáticas, que son enseñados en la Educación Básica y Media de nuestros jóvenes. Asimismo, en este taller mostraremos algunos senderos de aprendizaje de las matemáticas, integrados a las ciencias naturales, siguiendo algunos métodos arquimedianos, en ambientes de la metodología de Aula Taller, donde el aprender haciendo, el uso de material tangible, el apoyo en guías de trabajo, el construir las ideas y los conceptos son, es la clave el conocimiento. Esto lo compartiremos con los maestros a través del estudio de los cuerpos redondos y las ideas de flotación de los cuerpos. Cabe aclarar, además que, ni la metodología ni el tema a trabajar han sido explorados en nuestro país. Es por ello que queremos compartirlo, ya que es una experiencia que hemos vivido en otros espacios y que ha tenido un buen resultado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La teoría de la probabilidad es una rama importante dentro del desarrollo del pensamiento aleatorio, y en general, de la educación matemática, pues promueve el uso de heurísticas para realizar predicciones y tomar decisiones en torno a una situación del diario vivir. Si bien, en los lineamientos curriculares y en los estándares básicos de calidad se citan conceptos y temáticas en relación con la probabilidad que deben ser abordadas en las aulas de clase, las formas usuales de enseñanza ponen en evidencia el énfasis determinista que recae en la cultura escolar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soluciones a los ejercicios propuestos en el anterior NÚMEROS, con especial incidencia en la metodología de su resolución. Comentarios sobre problemas históricos análogos. Nueva propuesta de problemas para resolver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se estudia el proceso que va desde las acciones reales y efectivas de añadir y quitar hasta la construcción de las operaciones aritméticas de suma y resta por parte de los escolares de 3, 4 y 5 años. El esquema lógico-matemático subyacente es el de transformaciones. Para que se den estas operaciones deben presentarse simultáneamente dicho esquema y la cuantificación, siendo esa simultaneidad la que lleva a las relaciones numéricas. Teniendo en cuenta que el origen de las operaciones de suma y resta en el escolar está supeditado a las acciones de añadir y quitar que se desarrollan en un proceso de construcción mental de los esquemas lógicos-matemáticos de transformaciones de cantidades discretas, se propone un plan de actuación en el aula de educación infantil mediante un tratamiento sistemático de dichas operaciones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta experiencia, abordó la problemática relacionada con el aprendizaje y la enseñanza de la geometría y en particular, el proceso de conceptualización y formulación de definiciones de objetos geométricos como los poliedros. El propósito de esta experiencia en la línea de la metodología estudio de clase (MEC), es el de planificar y orientar una clase que favorezca en los estudiantes la construcción del concepto de poliedro, desde principios pedagógicos y didácticos pertinentes y válidos. Su pertinencia radica en la generación de ambientes de aprendizaje alternativos, los cuales privilegian la construcción de conocimiento desde la interacción, además se favorece el proceso de conceptualización tan importante en el desarrollo del pensamiento y las competencias matemáticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un poco de historia. Los cálculos eran la preocupación principal de nuestros antepasados, que promovieron el desarrollo de las matemáticas. Así nacieron los logaritmos, en los últimosos del siglo XVII. Decía Laplace en aquello años, “el uso de los logaritmos, acortó el trabajo y duplicó la vida de los astrónomos”. En los últimosos de la década 1970 a 1980 se popularizaron las calculadoras. Que no son tan viejas. Yo, no las use. En 1972 entre a la facultad de química y no tenía calculadora. Un año antes, me compre una de las mejores reglas de cálculo. Para usarla deberíamos saber tanto, que nos calificarían de genio en la actualidad ¿Cuál es entonces la premisa de mi pensamiento? “Saber matemática no es saber hacer cuentas”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La sociedad actual demanda a su sistema educativo una formación estadística que capacite a sus ciudadanos para entender, comprender y resolver, la diversidad de información y problemas surgidos desde diversos ámbitos e interpretarlos en los contextos culturales que se presenten. En consecuencia, las curriculas educativas han incrementado sus contenidos estadísticos, desde la enseñanza primaria, hasta la universitaria, destacando la necesidad de la enseñanza de la estadística como una valiosa herramienta de la metodología científica. Un buen ejemplo lo constituye la estructura curricular del Sistema Educativo Argentino que a partir de 1995 establece la escolaridad obligatoria en 10 años, incluyendo la estadística desde los primeros cursos del nivel inicial. La formación básica en estadística ha sido encomendada, en los niveles no universitarios, a los profesores de matemáticas que generalmente no han recibido capacitación específica en el área. Para los profesores que se encuentran en esta situación, la enseñanza de la estadística supone un problema debido a que se requieren conocimientos, destrezas y experiencias en el tratamiento y elaboración de información que demanda: la selección de técnicas e instrumentos que mejor se adapten a los datos, la flexibilización para cambiar procedimientos, la interpretación adecuada de los resultados y la capacidad para evaluar la validez y fiabilidad de las conclusiones extraídas. Ser capaz de dominar esta actividad o enseñarla a un grupo de estudiantes no es una tarea simple, necesita de preparación previa y cierta experiencia. Holmes (2002) indica que, puesto que las lecciones de estadística, dentro de los libros de matemática han sido generalmente escritas por matemáticos, el objetivo preferente de las mismas es la actividad matemática y no la actividad estadística. Esta puede ser la razón por la cual prevalece la idea de que la estadística que se enseña en las escuelas o niveles básicos universitarios no refleja suficientemente la naturaleza eminentemente práctica de esta disciplina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El rol del aprendizaje significativo mediante la utilización de nuevas estrategias de enseñanza. Este aprendizaje involucra un proceso en el que lo que aprendemos es el producto de la información nueva, interpretada a la luz de lo que ya sabemos. Para que haya aprendizaje significativo, es necesario que el alumno pueda relacionar el material de aprendizaje con la estructura de conocimientos de que ya dispone. De esta forma, junto con la motivación favorable para la comprensión, y, los esfuerzos que requiere, una condición esencial del aprendizaje de conceptos será que estos se relacionen con los conocimientos previos de los alumnos. El nuevo conocimiento, que queremos que el alumno aprenda en esta oportunidad, surgirá de un adecuado desarrollo del razonamiento deductivo y manejo de los conocimientos previos. Entendiendo por razonamiento deductivo al proceso de razonamiento en que, para obtener una conclusión lógicamente necesaria a partir de ciertas premisas, los pasos están encadenados siguiendo ciertas reglas lógicas y son justificados rigurosamente. Las justificaciones están basadas en los axiomas y definiciones de la teoría respectiva, en teoremas demostrados con anterioridad y en las premisas o hipótesis del problema o teorema. El docente debe ayudar al estudiante a desarrollar y usar el poder del razonamiento deductivo comprometiéndolo permanentemente a pensar, analizar y deducir conjeturas en clase, además debe crear y seleccionar tareas apropiadas que puedan involucrar la generalización, la organización de datos para validar o refutar una conjetura. Un grupo de bachillerato del último año desarrolló la demostración de un teorema de convergencia de series, con los resultados de un 46% que la realizó exitosamente, versus un 36% que no lo logró. Los alumnos que lograron hacer la demostración, no eran los más estudiosos pero tenían una buena capacidad de razonamiento. En cambio los que generalmente preparan las evaluaciones y que se apoyan mucho en la memoria, no lograron un buen desempeño.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este video muestra la idea intuitiva de límite de una función en un punto. Además muestra un par de casos típicos en los que es interesante calcular el límite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El último de los problemas propuesto a los lectores en el Tratado de Huygens, publicado por primera vez en 1657, es hoy día conocido como el problema de la ruina del jugador. Dicho problema consiste en calcular la probabilidad de que un jugador arruine al contrario en un juego a un número indeterminado de partidas, cuando los dos jugadores inician el juego con un cierto número de monedas cada uno. A priori, su enunciado asusta cuando se enfrenta por primera vez, pero puede ser un buen recurso didáctico para profesores que enseñan cálculo de probabilidades a estudiantes de un determinado nivel, dada la resolución elegante y cómoda que se dispone, sin necesidad de un gran aparato matemático. La autoría del problema, tradicionalmente asignada a Huygens, la resolución de éste, la de De Moivre de 1712, así como una resolución más actual y cercana al estudiante del mismo, forman parte del contenido de este artículo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El número de oro Φ=1,618... es al plano, lo que el número plástico P=1,2471... es al espacio. Ver esto es el objetivo final de este clip. Pero permitan primero una breve visita a la familia de los números metálicos en la cual destaca con luz propia el áureo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La idea de diseñar en la asignatura taller de matemáticas una página web surgió a lo largo del curso 2000-01. Buscábamos resaltar el carácter lúdico del taller y pensamos que una página web podría ser un buen elemento motivador de la asignatura, a la vez que en ella podíamos mostrar a otras personas parte del trabajo que allí realizamos. En el taller tratábamos de redescubrir las Matemáticas y en la página web hablábamos de matemáticas mostrando las investigaciones y curiosidades que se realizaban a lo largo del curso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La convincente fuerza de las imágenes y su belleza artesanal son habitual y lamentablemente desaprovechadas en las aulas. Las pruebas visuales no demuestran -eso dice el rigor puritano- pero asientan cimientos, aportan elegancia plástica y ayudan a la motivación. Desde primaria hasta la universidad, la enseñanza de las matemáticas está planificada bajo un obsesivo punto de vista que prima lo general sobre lo particular. Sin embargo, una didáctica humanista, que permita al alumnado construir y diseñar, sólo es posible desde un buen conocimiento de las propiedades individuales de los objetos matemáticos.