4 resultados para Valor-objetivo
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
A lo largo de la licenciatura de Matemáticas (que terminamos el curso pasado), el rigor ha sido la característica predominante: siempre se ha demostrado todo lo afirmado o utilizado. Este hecho hizo que no concibiéramos unas matemáticas sin demostraciones. Con este enfoque de las matemáticas iniciamos nuestro periodo de prácticas (correspondientes a la asignatura "Prácticas de la Enseñanza" de quinto curso) y nos enfrentamos por primera vez con la realidad educativa: no todo lo que se le explica a los alumnos debe ser objeto de demostración. Mediante esta comunicación pretendemos compartir nuestras reflexiones sobre el valor de la demostración en las matemáticas de la Enseñanza Secundaria.
Resumo:
El SND ha sido considerado un aspecto básico dentro del currículo de matemáticas, debido a su funcionalidad en los procesos de escritura de cantidades y en el desarrollo de algoritmos de operaciones básicas. Acorde a ello, la escuela dedica gran cantidad de tiempo al proceso de escritura y reconocimiento de cantidades, a la comparación de cantidades y al reconocimiento del valor posicional de una cifra, pero aun así los estudiantes no logran comprender los principios báscos del sistema. La presente propuesta se basa en la sistematización de una secuencia de actividades de aula orientada al reconocimiento de los principios que estructuran y dan sentido al S.N.D. como es el proceso de equivalencias entre las unidades del sistema y el reconocimiento del valor de posición de una cifra dada. Para llevar a cabo el proceso de sistematización de experiencias, se retomaron los principios metodológicos de la investigación acción educativa. Estas orientaciones permiten una búsqueda continua de alternativas de trabajo, y a la vez integran la exploración reflexiva que el docente hace de su práctica incidiendo en la lanificación y el mejoramiento de la misma, lo cual constituye un elemento esencial para la formación investigativa de los futuros docentes de matemáticas
Resumo:
El estudio de la matemática permite la modelización de situaciones que conducen a la resolución de problemas. Por esto, es primordial que los estudiantes analicen los cambios que ocurren en diferentes fenómenos biológicos, económicos y sociales. Sin embargo, durante la escuela media, no se favorece demasiado el desarrollo del pensamiento y lenguaje variacional, base para la comprensión de los conceptos de la matemática de la variación y el cambio, es decir el cálculo. Por este motivo, este trabajo, enmarcado en el proyecto de investigación “Pensamiento y lenguaje variacional: bases para la construcción de conceptos del cálculo diferencial”, tiene como objetivo el análisis y valoración de los resultados obtenidos en una experiencia de aula centrada en el diseño, implementación y corrección de una guía de actividades que indaga las nociones que tienen los alumnos que ingresan al nivel universitario con respecto a variables, cambios, funciones, imagen, gráficas, expresión analítica, valor numérico y comportamiento de funciones.
Resumo:
Se proponen tres demostraciones sobre el valor de la potencia de un punto con respecto a una circunferencia. La primera utiliza el método de la geometría analítica, y las propiedades de las soluciones de la ecuación de segundo grado. La segunda se basa sólo en el Teorema de Pitágoras. Y, la tercera utiliza el álgebra de vectores. Por último, se da el resultado de la potencia de un punto con respecto a una elipse. Con esto se intenta suplir el hueco en los libros de texto, de nivel de Bachillerato, que no recogen una demostración general sobre la constancia de la potencia del punto con respecto a una circunferencia.