8 resultados para Uso de la fuerza
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Arquímedes es el matemático y científico de todos los tiempos, desde la Antigüedad hasta nuestros días; en él se personifican variedad de métodos para resolver situaciones matemáticas y científicas, además de ideas fundamentales que han acompañado la evolución de muchos conceptos de las matemáticas y las ciencias; entre ellas están las ideas sobre el cálculo integral, la geometría de los cuerpos redondos, la cuadratura de la parábola, la conceptualización sobre espejos y poleas, la palanca y las ideas sobre flotación de los cuerpos, a través de la experimentación. Es por ello que, siguiendo algunas de sus rutas, se desarrollará el taller “Algunas ideas matemáticas y físicas de Arquímedes”, mostrando a través de algunas de estas experiencias desarrollos metodológicos, e integración de ideas de las matemáticas con otras áreas del conocimiento científico. Además, estos métodos permiten desarrollar ideas, que pueden ser aplicadas en procesos de aprendizaje de algunos conceptos de las matemáticas, que son enseñados en la Educación Básica y Media de nuestros jóvenes. Asimismo, en este taller mostraremos algunos senderos de aprendizaje de las matemáticas, integrados a las ciencias naturales, siguiendo algunos métodos arquimedianos, en ambientes de la metodología de Aula Taller, donde el aprender haciendo, el uso de material tangible, el apoyo en guías de trabajo, el construir las ideas y los conceptos son, es la clave el conocimiento. Esto lo compartiremos con los maestros a través del estudio de los cuerpos redondos y las ideas de flotación de los cuerpos. Cabe aclarar, además que, ni la metodología ni el tema a trabajar han sido explorados en nuestro país. Es por ello que queremos compartirlo, ya que es una experiencia que hemos vivido en otros espacios y que ha tenido un buen resultado.
Resumo:
Este artículo presenta los resultados de una investigación, realizada en la escuela media, sobre el uso de la lengua natural en contexto matemático, y sobre la producción de modelos externos en torno a las concepciones profundas de algunos conceptos elementales que poseen los alumnos. Con una técnica que invita a los alumnos a asumir un papel diferente del que usualmente juegan en la clase de matemáticas, se intentaba empujarlos a escribir acerca de asuntos matemáticos elementales en un lenguaje coloquial, sin los aparatos formales que con frecuencia exhiben. No obstante haber acogido bien el juego del cambio de papel que les propusimos y haber respondido a las situaciones problemáticas usando lengua natural, la mayoría de los alumnos presentó la tendencia a completar su respuesta inicial con una respuesta formal, a menudo vacía, que tenía poco que ver con la tarea. En casos en que los alumnos no usaron aparatos formales para responder se identificaron modelos que resultan interesantes en el plano de verificación de los aprendizajes.
Resumo:
El trabajo trata de mostrar los logros en el aprendizaje de la matemática –área de Geometría– a través del contenido transversal Educación para la gestión de riesgos y la conciencia ambiental, usando recursos tecnológicos como Google Maps y Google Earth. El tema desarrollado para tal fin fue el problema sismológico en el Perú. Finalmente, se señalan temas de geometría involucrados, así como temas anexos a través del uso de contenidos de Estadística, Geografía y Ciencias Naturales. La experiencia se hizo con un grupo de 50 alumnas del Tercer año de Educación Secundaria de una escuela pública del Perú.
Resumo:
Este trabajo de investigación ha centrado la atención en generar diseños didácticos que aborden temas del Cálculo y Precálculo del currículo actual, cuyos fundamentos teóricos están basados en investigaciones de corte socioepistemológico favoreciendo el uso inteligente de la tecnología en el aula de matemáticas. En éstos se retomarán aspectos que ayuden a la reconstrucción de significados de tópico matemáticos como el teorema de Thales, el uso de la subtangente para caracterizar una curva (máximos, mínimos y puntos de inflexión) y la noción de acumulación para abordar el área bajo la curva.
Resumo:
La periodicidad como propiedad es identificada de manera natural por los individuos y resulta habitual el uso de los significados creados de forma compartida y que éstos se trasladen en contextos diferentes en donde son aplicados. Los resultados obtenidos en investigaciones como Buendía (2004, 2005a) y Alcaraz (2005) aportan no sólo elementos de corte cognitivo, sino herramientas que fungen como argumentos válidos en el reconocimiento de la naturaleza periódica. Lo periódico puede conformar todo un lenguaje, abarcando los ámbitos culturales, históricos e institucionales y procurándole un carácter útil al conocimiento matemático. La unidad de análisis es el elemento que tiende un puente entre un tratamiento empírico de la periodicidad y uno científico (Montiel, 2005), lo cual favorece una construcción significativa del conocimiento matemático. Nuestro marco teórico es la aproximación socioepistemológica la cual centra su atención en el examen de las prácticas sociales, entendidas como las acciones o actividades realizadas intencionalmente con un objetivo de transformación y con ayuda de herramientas que favorecen la construcción del conocimiento matemático, incluso antes que estudiar a los conocimientos mismos.
Resumo:
Hoy no se puede pensar en un país moderno con un sistema universitario excluyente, por más que éste brinde una preparación “de excelencia” (Zito, 2006). En muchas universidades donde se enseñan carreras vinculadas a las ciencias, como las ingenierías, se desarrollan cursos de ingreso para los jóvenes, que tienen la función de repasar los contenidos dados en el nivel anterior. El Departamento de Matemática General de la Cujae, ha desarrollado desde hace alrededor de diez años un curso de este tipo (Fernández, 2003). En este trabajo se presenta el desarrollo de un curso de auto preparación en Matemática para el ingreso a la Universidad, en el que se utiliza como soporte tecnológico una calculadora graficadora, aprovechando las posibilidades que ofrece la calculadora CASIO ClassPad 300.
Resumo:
La calculadora graficadora como herramienta tecnológica ofrece la posibilidad de despertar el interés del estudiante y estimular su entendimiento, y en este trabajo se analiza la puesta en escena de una situación didáctica como nota de clase (Lluck, 2004). Conformada con una secuencia de actividades para ser trabajadas por los alumnos dentro y fuera del aula. Esta secuencia se diseña de tal forma que al ponerla en práctica es posible hacer matemáticas, considerando que dichos saberes matemáticos son necesarios para ser un ciudadano que se desempeñe con éxito en su labor y comprenda la importancia de la matemática en su vida actual y futura.
Resumo:
En este artículo presento algunos aspectos relativos a mi experiencia de uso de la calculadora como elemento didáctico en las clases de cálculo; particularmente, registro algunos pasos que realicé antes de utilizar la calculadora en clase, propongo tres preguntas que atraviesan toda la experiencia, muestro tres ejemplos que ilustran la manera como utilicé la calculadora y discuto algunos beneficios y riesgos que identifiqué al usar este instrumento. Esta experiencia logró cuestionar mi conocimiento matemático-didáctico, mi labor docente y me enfrentó a cuestiones de investigación en Educación Matemática que no había considerado antes.