124 resultados para Situaciones lúdicas
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.
Resumo:
Esta propuesta es el resultado de la investigación llevada a cabo en el Núcleo de Pensamiento Aleatorio y los objetivos fueron (1) diseñar una unidad didáctica que (a) abordara la enseñanza de la combinatoria con un fuerte énfasis en la comprensión e (b) involucrara a los estudiantes en la construcción colectiva de los significados mediante el trabajo en grupos colaborativos. (2) contrastar la efectividad de la unidad didáctica en el desempeño de los estudiantes en un test de combinatoria. Para responder a estos objetivos seguimos las recomendaciones de la Teoría de situaciones didácticas de Brousseau (1997) y las recomendaciones para el análisis de datos cuantitativos (Hernández- Sampieri, Fernández-Collado, & Baptista-Lucio, 2008).
Resumo:
En este documento me propongo analizar la experiencia con futuros profesores de matemática cuando se enfrentaron a dos situaciones en las cuales los modelos y la modelación tiene presencia. A través de la experiencia vivida por los futuros profesores se han podido construir algunas reflexiones sobre las posibilidades que este tipo de situaciones ofrece frente la apropiación de significados de los tópicos matemáticos asociados a los contextos tanto en alumnos que han estudiado previamente estas nociones, como en aquellas que no lo han hecho. Finalmente, algunas implicaciones reconocidas por los futuros profesores, también se harán explícitas.
Resumo:
El objetivo central de este trabajo pedagógico es presentar una experiencia de aula innovadora en la orientación de la matemática escolar que se ha venido implementando en el Colegio Santa Fe a través de una estrategia llamada Enseñanza Problémica.
Resumo:
En este momento la educación matemática en el país se encuentra cruzando por un período crítico caracterizado por transformaciones fruto de la implementación de las políticas del Ministerio de Educación Nacional. Una de ellas, relacionada con los estándares básicos de matemáticas, son punto neurálgico para el sistema educativo en general. Su implementación en las instituciones educativas del país deberá generar espacios de reflexión, debate, análisis, confrontación, etc., a partir de los cuales se introduzcan formas nuevas de comprender, implementar, evaluar y transformar el currículo de matemáticas de nuestro país.
Resumo:
La enseñanza y aprendizaje de temas matemáticos como la proporcionalidad directa usualmente se realiza modelando situaciones “reales” y “cotidianas”. Los profesores de matemáticas asumimos que tales situaciones se comportan en efecto de forma proporcional, pero en la realidad su comportamiento es diferente. Ello nos lleva a la tarea de identificar en la cotidianidad de los estudiantes, situaciones que se dejen modelar a través de funciones lineales, tarea difícilmente realizable, pero altamente formativa.
Resumo:
A partir de este trabajo se busca establecer una relación entre el análisis epistemológico de la matemática y los procesos de enseñanza-aprendizaje de la geometría, centrados en un estudio de los problemas que históricamente han fundamentado la integral, desde la postura de resolución de problemas, las ventajas e implicaciones para el trabajo en el aula, el docente y el estudiante. Se hace una presentación del trabajo realizado geométrica y analíticamente para obtener las fórmulas del cálculo de área y volumen de algunas figuras, encaminado a un estudio sobre la importancia del tratamiento de situaciones problema para la enseñanza de la geometría, partiendo de los aportes que desde las situaciones históricamente abordadas se pueden realizar al conocimiento del profesor y los aspectos que puede tener en cuenta para orientar la enseñanza.
Resumo:
A decir de algunos especialistas en matemáticas y matemática educativa, lograr que los estudiantes tengan un entendimiento profundo del cálculo y con ello, contribuir al desarrollo de futuros ingenieros, matemáticos y científicos en general, precisa del favorecimiento de formas de pensamiento y lenguaje de naturaleza variacional, asociados al concepto función. En este sentido, en el presente escrito se describen algunas ideas y referentes teóricos que motivaron y guiaron la producción de un cuaderno de estudio sobre dicho concepto, como es el caso de la modelación matemática en tanto actividad y práctica matemática.
Resumo:
Con este trabajo se da cuenta de los aprendizajes que logran los estudiantes del nivel bachillerato al trabajar con un problema de una situación real de movimiento empleando tecnología como son los sensores (dispositivos transductores) y calculadora graficadora. La aproximación socioepistemológica sirvió de sustento para realizar un análisis previo, el cual nos permitió identificar tres usos de las gráficas: construcción de gráficas utilizando la regla de correspondencia entre dos variables, gráficas por operaciones gráficas y la graficación por medio de la simulación de un fenómeno físico empleando tecnología. El trabajo con estudiantes nos permitió caracterizar el uso de las gráficas a partir de las actividades de modelación con las características del Comportamiento Tendencial de las Funciones.
Resumo:
Esta investigación se realizó con alumnos de Nivel Medio Superior (NMS) que habían cursado la asignatura de Matemáticas I y que tenían dificultades con la comprensión del concepto de número racional. El propósito fue poner en escena situaciones didácticas, para explorar sus efectos en la comprensión de este concepto. Para tener información precisa de cuál es el estado que guardaba este conocimiento en los alumnos, se hizo un diagnóstico, por lo que se diseñaron y validaron las situaciones que se utilizarían tanto en el diagnóstico como en la puesta en escena. En su diseño se consideraron los contenidos de aritmética de NMS, diferentes sistemas de representación y el modelo utilizado por Sierpinska sobre los actos de comprensión de conceptos matemáticos. Al comparar los resultados que se obtuvieron en el diagnóstico con los de la puesta en escena de las situaciones didácticas, se encontró que: el permitir que los alumnos conocieran diferentes formas de representar a los números racionales, el significado de cada una de ellas, así como convertir o traducir unas representaciones en otras a través de las situaciones didácticas, propició la construcción de este concepto y mejoraran su comprensión.
Resumo:
Al introducir las nuevas tecnologías a los escenarios escolares se provocan reacciones (Chevallard, 1992) debido a que altera la armonía del Sistema Didáctico (el cual está compuesto por tres componentes; estudiantes, profesor y el saber). La relación entre los componentes del sistema didáctico se modifican debido a que existe un instrumento mediador que participa transformando las prácticas. Este proceso de integración requiere establecer las condiciones de equilibrio del Sistema Didáctico, al replantear el dominio del conocimiento, al caracterizar la interacción entre los estudiantes y el profesor, al ubicar el papel de la tecnología en el currículo, Laborde, (2001) y desde la perspectiva socioepistemológica, (Cantoral, 2004; Castañeda, 2004) explicar cómo se modifican las prácticas y cómo se construyen nuevos escenarios para el estudio de las matemáticas. Este trabajo de investigación propone describir las prácticas asociadas al estudio de la derivada en un ambiente tecnológico en las que se ponen en juego diversas situaciones interrelacionadas utilizando objetos java. Estos objetos, cuyo escenario natural de aplicación es en la red de Internet, se caracterizan por la disponibilidad de manipulación.
Resumo:
Con el propósito de promover razonamiento probabilístico bajo los enfoques intuitivo, clásico y frecuencial en estudiantes de grado undécimo sin instrucción previa en probabilidad, se realizó un análisis didáctico para proponer la implementación de un conjunto de tareas que permitan el avance en dicho razonamiento. A partir de dicho análisis se establecen una serie de capacidades, errores y dificultades que perfilan una posible ruta de instrucción y que delinean como aporte de esta ponencia una propuesta de instrucción que incluye situaciones asociadas a juegos de tablero, laberintos, aparato de Galton y carreras de juegos electrónicos.
Resumo:
En éste trabajo se reportan resultados de la investigación que referencia el título. El proyecto se desarrolló en estudiantes de noveno grado, de educación básica, a través de situaciones problema del contexto sociocultural y de las ciencias, bajo un diseño cualitativo y en las tres fases ; diseño y aplicación de una prueba diagnóstica, para reconocimiento de posibles dificultades de los estudiantes, intervención en el aula, para superación de las dificultades detectadas, y una prueba de contraste, para valorar el logro de las estrategias aplicadas y obtener información para mejoramiento del aprendizaje de los estudiantes. Los resultados muestran avances significativos de los estudiantes en cuanto a la comprensión de los conceptos, procedimientos y aplicaciones del pensamiento métrico.
Resumo:
Seguimos adelante con el recorrido que hemos comenzado por las TIC y su uso en el aula de matemáticas en esta sección MatemásTIC. Si el primer número de la sección lo dedicamos a una aplicación de software libre para el desarrollo del cálculo mental y el segundo a una aplicación para la práctica de la geometría interactiva, en esta tercera hemos optado por una aplicación lúdica de contenido matemático.
Resumo:
El analizar las relaciones epistemológicas entre prácticas sociales y el conocimiento matemático es uno de los objetivos de una aproximación teórica denominada socioepistemología. Esto permite informar acerca de cómo se construye dicho conocimiento desde una perspectiva de la actividad que desarrollan los humanos interactivamente y tomar en cuenta no sólo la producción matemática final, sino las herramientas y los argumentos que entran en juego. Una vez que se reconoce este origen social, podemos ver qué ocurre en sistemas didácticos por medio del diseño de secuencias cuyo origen es precisamente una socioepistemología del saber. La situación que se genera tiene pues la intención, de hacer patente la relación entre práctica y saber, en particular, entre la predicción y la periodicidad.