17 resultados para Saramago, José, 1922- Ensaio sobre a Cegueira
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este artículo se presentan algunas experiencias sobre la aproximación intuitiva en geometría y sus implicaciones en el cálculo aproximado del número pi en la ESO. El proceso se gradúa en torno a cuatro actividades. En las dos primeras se aproxima experimentalmente el número Pi y se pretende descubrir el grado de móviles de los alumnos para enfrentarse, desde el punto de vista intuitivo, a los procesos geométricos de aproximación. En las dos últimas se hace una estimación de Pi, en un caso encontrando una secuencia de números irracionales convergente a ese número, y el otro, a partir de una simplificación del método utilizado por Arquímedes, que permite además dar una demostración diferente de la habitual.
Resumo:
El C.E.I de Málaga se adhiere a la experimentación sobre la reforma de las enseñanza medias en el curso 84-85, cuando se inicia en la comunidad Andaluza y por tanto una año después que en territorio dependiente del M.E.C y otras comunidades autónomas, con competencias por lo que contábamos de partida con las programaciones propuestas por ellos, al menos como documento sobre el que empezar a discutir.
Resumo:
En este trabajo se parte de la perspectiva constructivista de la enseñanza y aprendizaje de las matemáticas y se considera la resolución de problemas como una actividad interesante y formativa. Se presenta el problema del tablero de ajedrez y distintos itinerarios para su trabajo, siguiendo las fases de Polya (1982) para la resolución de problemas. Finalmente se presentan algunas reflexiones sobre la resolución del problema, sobre el análisis de esta resolución y sobre la utilidad y conveniencia de este tipo de análisis para el proceso de enseñanza y aprendizaje de las matemáticas.
Resumo:
La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. La elevada complejidad de su estudio y el considerable volumen de conocimientos sobre el tema disponible en la actualidad, justifican la pertinencia de trabajos como el que aquí se presenta, que tiene como principales propósitos delimitar, a través de la reflexión sobre distintas cuestiones abiertas fundamentales, algunos de los principales problemas actuales en torno a la investigación sobre comprensión en matemáticas y trazar, en base a ellos, posibles vías de actuación operativas.
Resumo:
Durante los cursos 1992 a 1998 hemos trabajado en un proyecto de investigación dirigido al estudio de las concepciones iniciales que tienen los alumnos sobre la asociación estadística y su evolución después de diversos experimentos de enseñanza usando ordenadores. En este trabajo, describimos brevemente los resultados de este proyecto, y los utilizamos como base para la reflexión sobre el papel del ordenador como recurso didáctico y como instrumento en la resolución de problemas, extendiendo las conclusiones presentadas en Batanero y cols. (1998).
Resumo:
Lo que sigue tiene dos partes bien diferenciadas: una primera que presenta unas notas elaboradas in situ sobre la exposición de E. Lacasta y otra más elaborada, que más que una réplica pretende dar una visión algo diferente sobre el uso de las gráficas cartesianas. La reflexión personal y el concurso de las nuevas tecnologías marcan el enfoque que aquí se describe.
Resumo:
Se describe y analiza el desempeño de dos niños de educación primaria con edades comprendidas entre 6 y 7 años, en varias cuestiones y tareas sobre invención y resolución de problemas aritméticos verbales. Los resultados informan de su conocimiento informal sobre la idea de problema, los elementos que lo componen, el papel que juegan los números en un problema, y los factores que determinan que un problema sea difícil.
Resumo:
Estudiamos, desde perspectivas simbólica y fenomenológica, diferencias y analogías existentes entre dos definiciones: la de límite finito de una sucesión y la de sucesión de Cauchy. Las diferencias entre una y otra definición parecen acentuarse en el aspecto fenomenológico, ya que observamos fenómenos distintos en cada una de ellas.
Resumo:
This study is part of the area of research in Psychology of Mathematics Education that investigates, among other things, knowledge relating to the formation of mathematical concepts. The objective was to investigate the conceptual knowledge of polygons of 76 high school students in terms of defining attributes and examples and non-examples. The instruments for collecting data was a test with two questions about polygons, defining attributes of a test and a test of examples and non-examples, based on the theory of Klausmeier and Goodwin (1977) on formation of concepts. The results showed that participants of the survey had difficulties in identifying defining attributes of polygons and non-discriminating examples of examples, showing the formation of this concept to the level of identity.
Resumo:
El presente trabajo se centra en el estudio del conocimiento sobre la orientación espacial de alumnos de 1o y 4o de ESO. En esta comunicación presentamos los resultados relativos a uno de los subbloques de contenidos abordados: la representación plana de entornos. Comparamos las respuestas de alumnos de ambos cursos de un mismo centro educativo a las mismas cuestiones. Los resultados muestran diferencias significativas entre ambos grupos y ponen de relieve cómo algunas dificultades de los alumnos (por ejemplo, respecto del concepto de plano) dependen de las características del entorno a representar.
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
El módulo 7 centra su atención en una evaluación del trabajo realizado hasta el momento con el objetivo de proponer y justificar una nueva planificación de implementación futura. Su desarrollo se concretará en cuatro actividades: la primera es un análisis de los resultados recogidos en relación con los logros de aprendizaje de los escolares; la segunda se ocupa desde el mismo punto de vista que la primera, de los factores afectivos estudiados; la tercera se centra en interpretar los análisis realizados en las dos primeras en términos de un balance estratégico de todo el proceso; finalmente, la cuarta actividad es un nuevo diseño con motivo del balance previo.
Resumo:
En la investigación conducente a una tesis doctoral, estudiamos cómo reflexionan sobre su enseñanza, profesores de matemáticas, mientras participan en un curso de formación. La reflexión comienza seleccionando un problema profesional. Una de las parejas de profesores se planteó profundizar en las dificultades que tienen los alumnos para traducir enunciados a expresiones algebraicas (que los profesores llaman modelización). Para poder interpretar la reflexión hemos realizado un análisis didáctico de la enseñanza del álgebra en el inicio de secundaria. En esta comunicación presentamos algunas apreciaciones sobre el papel de la modelización en álgebra y su relación con los diferentes “roles de las letras en álgebra”, que nos servirán para interpretar los planteamientos y reflexiones de los profesores.
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
El siguiente documento presenta una secuencia de actividades para trabajar la noción del concepto de limite involucrado en el pensamiento variacional en grado once, donde se toma como punto de partida el trabajo con sucesiones, permitiendo desarrollar a través del uso de diferentes tipos de sucesiones y la noción de convergencia; dicho concepto, tomado desde la definición de (Steward, Redlin, & Watson, 2001). Basado en la metodología propuesta por el grupo (DECA, 1992), la cual, no solo muestra el enseñar matemáticas, como entregar algoritmos al estudiante, sino que por el contrario, un aprendizaje desde la construcción del objeto matemático, resaltando la participación activa y critica del estudiante.