2 resultados para Salzillo y Alcaraz, Francisco, 1707-1783.
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Uno de los más prolíficos matemáticos, sino el que más, que han existido a lo largo de toda la historia, ha sido el suizo Leonhard Euler (1707-1783). Además de, en nuestro caso, introducir el uso de la letra griega π (inicial de perímetro) para nuestro número, dió numerosas aproximaciones mediante desarrollos en serie de la relación existente entre la circunferencia y su diámetro. El presente articulo trata de explicar el ingenioso procedimiento de dos de dichas series: la serie de Jacques Bernouilli y, la serie de Leibniz.
Resumo:
La periodicidad como propiedad es identificada de manera natural por los individuos y resulta habitual el uso de los significados creados de forma compartida y que éstos se trasladen en contextos diferentes en donde son aplicados. Los resultados obtenidos en investigaciones como Buendía (2004, 2005a) y Alcaraz (2005) aportan no sólo elementos de corte cognitivo, sino herramientas que fungen como argumentos válidos en el reconocimiento de la naturaleza periódica. Lo periódico puede conformar todo un lenguaje, abarcando los ámbitos culturales, históricos e institucionales y procurándole un carácter útil al conocimiento matemático. La unidad de análisis es el elemento que tiende un puente entre un tratamiento empírico de la periodicidad y uno científico (Montiel, 2005), lo cual favorece una construcción significativa del conocimiento matemático. Nuestro marco teórico es la aproximación socioepistemológica la cual centra su atención en el examen de las prácticas sociales, entendidas como las acciones o actividades realizadas intencionalmente con un objetivo de transformación y con ayuda de herramientas que favorecen la construcción del conocimiento matemático, incluso antes que estudiar a los conocimientos mismos.