14 resultados para Representaciones identitarias
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Este artículo presenta la experiencia vivida en la elaboración y aplicación de una secuencia de actividades, que a través de promover el análisis cuidadoso del enunciado y el uso de las representaciones, pretenden lograr un mejor desempeño por parte de los estudiantes en la resolución de problemas.
Resumo:
Se analiza la importancia de la inclusión del tema de sucesiones desde preescolar hasta el nivel medio superior en México. El marco teórico que da soporte a esta investigación es la Teoría de Representaciones Semióticas de Duval (1998), en combinación con el uso de tecnología TI-Nspire. Centramos la atención en el nivel medio superior, con la finalidad de que los alumnos a través del manejo de las representaciones semióticas: verbal, gráfica, tabular y analítica, adquieran el concepto de sucesión aún sin definirlo formalmente. A través del uso de representaciones semióticas instrumentadas en la calculadora TINSpire con ejemplos acordes al entorno del alumno (deportes, medio ambiente) se forma el concepto de sucesión. Paralelamente se insiste en la detección tanto del dominio, imagen y grafo; lo anterior con la finalidad de que el alumno visualice y detecte que el dominio de las funciones en juego siempre es el conjunto de los números naturales y la imagen un subconjunto de los números reales, así como de la relación funcional.
Resumo:
El presente trabajo muestra parte de los resultados de un proyecto de investigación desarrollado en el Instituto Politécnico Nacional, relacionados con el estudio de variación, concepto que es esencial para analizar diferentes fenómenos físicos y de la vida cotidiana empleando para ello la exploración múltiples representaciones a partir de tratamientos cuantitativos, cuyo objetivo fue analizar las diferentes estrategias que el alumno emplea cuando enfrenta situaciones que están ligados a la noción de variación. En particular el estudio se enfocó en la noción de función que es vista como modelo para el estudio de la variación, para lo cual se diseñaron actividades con el propósito de fomentar la exploración de tratamientos cuantitativos que beneficien la identificación del contenido en múltiples representaciones. La experiencia se realizó con alumnos del nivel medio superior que cursaban la asignatura de Álgebra, impulsando un ambiente de comunicación y discusión continua.
Resumo:
El presente trabajo plantea la posibilidad de impulsar la Interpretación Global, en diversas representaciones para desarrollar tratamientos que permitan fomentar la exploración de sus contenidos. La experiencia se llevó a cabo con alumnos que cursaban la asignatura de álgebra del nivel medio superior, cuyo objetivo fue identificar las conjeturas y procesos cognitivos que el alumno desarrolla cuando se ha tenido la vivencia de explorar tratamientos cualitativos y cuantitativos en múltiples representaciones. Los resultados muestran la identificación de patrones cuando se plantean situaciones familiares en el alumno, así como el anclaje del contexto para algunos estudiantes y la descontextualización para otros.
Resumo:
En esta conferencia presentaré algunos resultados del estudio realizado sobre un fenómeno relacionado con la articulación de los sentidos asignados por estudiantes a diferentes representaciones de un objeto matemático, obtenidas mediante transformaciones semióticas de tratamiento. En este estudio describí y analicé algunos procesos de asignación de sentidos logrados por los estudiantes de grados 9o y 11o de educación básica y media (Colombia), en relación con tareas específicas en las que requieren realizar dichos tratamientos entre representaciones, y reporté algunas dificultades asociadas.
Resumo:
Uno de los problemas centrales que se presentan, para abordar el tema de límite, es sin duda cuando nos enfrentamos al concepto de infinito. Generalmente el docente al enseñar el concepto de infinito utiliza metáforas didácticas basadas en conjuntos muy grandes, esto para fijar la idea de infinitud. De acuerdo con la real academia española, esto permite crear la noción de infinito en un lenguaje cotidiano, lo que lleva a generar una mala formación de este concepto, dentro de un lenguaje matemático, ya que la imprecisión del lenguaje cotidiano hace ver al concepto de infinito muy vago y se aleja de la idea matemática como unidad total (Ortiz, 1994). El interés de nuestro trabajo se centra precisamente en el diseño de actividades, donde el estudiante pueda realizar y observar un proceso infinito, a través de ejemplos geométricos donde se presente la situación límite (proceso infinito culminado), permitiendo la formación del concepto de límite.
Resumo:
La presente investigación centra la atención en el contexto de la Teoría de Representaciones Sociales propuesta por Moscovici en 1961. Apoyándonos en esta teoría, realizamos un estudio y análisis de las Representaciones Sociales acerca del concepto “Matemática”, trabajo que tiene por objetivo identificar, analizar e interpretar algunos de los elementos que forman parte del sistema central, mediante un cuestionario aplicado a 29 estudiantes de preparatoria que forman parte del Instituto de Ciencia y Tecnología del Distrito Federal.
Resumo:
Este trabajo pretende dar a conocer el avance, que hasta el momento se ha logrado, en la línea de investigación: “Visualización y pensamiento global en Matemáticas”, la cual persigue, a partir de la Teoría de Representaciones Semióticas de Duval, la caracterización del estilo de pensamiento global y local, de estudiantes de nivel medio superior y superior y de sus profesores. En particular reporto los resultados preliminares encontrados hasta el momento con estudiantes de primeros semestres de licenciatura al abordar un problema de precálculo, contrastado con desempeños en ajedrez para interpretar aspectos semejantes en cuanto a la forma local o global de pensar un problema viendo sus registros que lleven a resultados que pudieran servir en la mejora de la enseñanza de algunos temas de matemáticas.
Resumo:
El propósito de esta investigación en curso es indagar sobre las representaciones que tienen estudiantes del nivel medio superior (secundaria y primer nivel universitario) acerca de nociones matemáticas variacionales, prestando especial atención a su forma de aprenderlas y buscando propiciar espacios de reflexión respecto de ellas, con el objeto de aportar información que sirva de base para la elaboración de diseños didácticos tendientes a mediar -en procesos de profundidad creciente- aprendizajes de nociones matemáticas variacionales, por ejemplo, la razón de cambio de una magnitud. Como técnica exploratoria consideramos el uso de bitácoras personales de reflexión de los estudiantes, para luego, en una segunda etapa, derivar en la construcción y aplicación de un cuestionario y la realización de entrevistas para triangular fuentes de información. En este artículo se reportan evidencias de la primera etapa, provenientes de las bitácoras personales, en el contexto de un curso de cálculo inicial.
Resumo:
El currículo de estadística en el sistema escolar sugiere desde la infancia un cambio metodológico de enseñanza hacia el desarrollo de los aspectos intuitivos de lo estocástico en situaciones de incertidumbre. El Taller tiene dos propósitos, presentar actividades de experimentos aleatorios con dispositivos manipulativos, algebraico y computacional para familiarizarse con la noción de distribución de probabilidad binomial. También, ilustrar que su enseñanza en la educación secundaria por medio de variadas representaciones proporciona una mayor potencia en el cálculo de probabilidades y la introducción de las ideas de parámetro, estadístico, simulación, variable aleatoria y aproximación.
Resumo:
En este artículo se reflexiona sobre la incorporación de gráficos tridimensionales a la educación matemática en bachillerato mediante el uso de un sistema de cálculo simbólico, y se presenta un ejemplo de aplicación. Al final del artículo se propone una posible línea de ampliación de la actividad descrita y se hace una última reflexión sobre las posibilidades que, para el aula, nos ofrecen los sistemas de cálculo simbólico.
Resumo:
Este trabajo de investigación supone un esfuerzo por comprender mejor el papel que las representaciones gráficas pueden jugar en la resolución de problemas matemáticos y se ha centrado en el estudio sistemático de los aspectos siguientes: los elementos que determinan la elección, la interpretación y las modificaciones de las representaciones gráficas en los comportamientos de resolución de problemas; las consecuencias de un entrenamiento en resolución de problemas en la utilización de representaciones gráficas. Dicho estudio ha estado motivado por la constatación del deterioro sufrido por la educación matemática, y en particular por la resolución de “verdaderos problemas" en España en las últimas décadas, y también por el declive del aspecto visual de las matemáticas en beneficio de los aspectos simbólicos, verbales y analíticos.
Resumo:
Usando el método de variación de parámetros, construimos la solución particular de una ecuación diferencial de segundo orden. Luego demostramos que es una representación diferente pero equivalente a aquella solución construida por el método de reducción de orden.
Resumo:
En este trabajo se describen las dificultades que tienen los estudiantes de ingenieria en FIME-UANL, al representar una función real en diferentes sistemas semióticos en la resolución de problemas, lo cual influye decisivamente en temas posteriores como es el de cálculo integral. La constatación se realiza mediante la aplicación de un test científico que evidencia el cambio de registros como la dificultad fundamental. La fundamentación teórica del trabajo se basa en la noción semiótica de registros llevado al plano matemático. Se hace una propuesta en la enseñanza de la matemática para aportar al aprendizaje del tema de funciones, que toma como fundamental la introducción de tareas y acciones relacionadas con el tránsito entre representaciones semióticas y así contribuir a la posibilidad de resolver problemas en el cálculo integral.