22 resultados para Pruebas Saber 11

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este estudio participaron profesores de matemáticas y estudiantes de tercer grado de bachillerato, a los cuales se les aplicó una prueba de matemáticas, con tres propósitos: primero conocer sus fortalezas y debilidades ante una prueba objetiva y estandarizada de matemáticas; segundo, determinar cursos de actualización para los docentes que conviertan sus debilidades en fortalezas; y tercero, que los profesores conozcan las debilidades de los estudiantes y apliquen las estrategias pertinentes para potenciar su aprendizaje. De los datos obtenidos, se detectaron los reactivos de mayor dificultad, en el caso de los docentes, los reactivos con un porcentaje menor o igual al 90% de respuestas correctas; y en el caso de los estudiantes, los de un porcentaje de respuestas correctas menor o igual al 60%. Los resultados señalan que las debilidades de los docentes, son las debilidades de los estudiantes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La Secretaría de Educación Distrital de Bogotá y el Instituto para la Investigación Educativa y el Desarrollo Pedagógico Idep puso en marcha el Laboratorio de evaluación de Bogotá que tiene como uno de sus propósitos generar espacios de discusión teórica, técnica y política en torno a la problemática de la evaluación desde una perspectiva investigativa. En ese sentido nace las pruebas comprender y el ejercicio reflexivo de los usos de la información como herramienta pedagógica. El presente artículo muestra algunos de los agentes que se asocian a la evaluación interna; y las aplicaciones que se hacen de los reportes de los resultados de evaluaciones masivas como son las pruebas comprender de matemáticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se presenta una propuesta desarrollada en el Departamento del Magdalena, Distrito Cultural e Histórico de Santa Marta. A finales del año 2002 se hizo un análisis de los bajos resultados presentados por los estudiantes de grado Once en las diferentes pruebas aplicadas por el ICFES, específicamente en el área de Matemática durante los años 2001 y 2002. A partir de estos resultados se organizó un equipo de trabajo donde se asumió que la evaluación es un proceso continuo e integral en la enseñanza de la matemática que no solo basta dar información a diario, sino conocer realmente si los estudiantes están aprendiendo, si verdaderamente los alumnos son competentes a la hora de evaluarlos y además si se cumplen los estándares mínimos exigidos por MEN. Para lograr tal fin se diseño un plan estratégico a mediano plazo que ayuda a fortalecer los niveles de desempeño en el desarrollo de sus competencias tanto integrales ((interpretativa, argumentativa, propositiva) como básicas (la comunicación, el razonamiento y la solución de problemas), obteniéndose a partir del año 2006 resultados satisfactorios en el área.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta investigación trata sobre las características de los ítems elaborados por las Comunidades Autónomas españolas en el curso académico 2008-2009 para atender la evaluación diagnóstica de la competencia matemática básica de los estudiantes de 2o de ESO. Se centra en su adecuación al modelo de evaluación de la competencia matemática establecido por el estudio PISA de la OECD, según considera el Ministerio de Educación y Ciencia. El estudio está basado en el análisis de los ítems incluidos en una muestra de cinco pruebas de diagnóstico cuyos resultados identifican sesgos y debilidades. Se concluye que para cumplir con el grado de ajuste adecuado a las evaluaciones PISA, es necesario que las Comunidades Autónomas revalúen el diseño de las pruebas a la luz de las variables de tarea definidas en su caracterización.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se aportan los resultados de una investigación, realizada con cuatro grupos de estudiantes de segundo de bachillerato de la Comunidad Autónoma Andaluza, sobre la incidencia de las pruebas de acceso a la universidad (PAU) en los significados de la integral definida, en cuanto a los posibles sesgos producidos. En primer lugar se detectan los significados de referencia que se comparan posteriormente con los obtenidos en las PAU, después se analiza el significado implementado en el aula. Por último, se dan algunas implicaciones para la enseñanza de la integral definida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se busca construir el concepto de parábola por medio de una experimentación física y una modelación con Cabri, de la siguiente situación: dados diez rayos de luz paralelos, colocar diez espejos planos que reflejen los rayos sobre un objeto dado. Siguiendo la teoría de las situaciones didácticas, la experimentación física y la modelación permiten a los alumnos vivir una experiencia que permitirá darle sentido al saber correspondiente al concepto de parábola, tanto como lugar de todos los espejos que reflejan rayos paralelos sobre un mismo punto, como de lugar geométrico de todos los puntos equidistantes de un punto y una recta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se presentan y analizan algunos resultados obtenidos en un estudio sobre creencias, con respecto a las matemáticas y su enseñanza aprendizaje, de los estudiantes de la enseñanza media costarricense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consideramos en este trabajo la necesidad de observar el proceso a través del cual los estudiantes enajenan las propiedades conceptuales de la representación gráfica y sus componentes figurales. Propusimos a 149 estudiantes de bachillerato, un cuestionario en el que se solicita localizar puntos con base en propiedades relacionadas en sus ordenadas y sus abscisas; habiendo constatado que los estudiantes localizan puntos sobre el plano bajo las normas analíticas, les proponemos identificar los puntos de una gráfica que tienen mayor ordenada o abscisa que los demás. En particular, deseamos saber, cuáles consideran nuestros estudiantes que son los “puntos” sobre la gráfica, las marcas colocadas al inicio y al final de la gráfica en forma de pequeños círculos, o el rasgo determinado por su posición definida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el documento se realiza un análisis sobre las pruebas nacionales de Matemáticas para Bachillerato en Costa Rica, se incluye la opinión de una muestra de 249 profesores de esta disciplina pertenecientes a diferentes regiones educativas del país. Los resultados muestran que no existe consenso entre estos educadores respecto a la conveniencia de estos exámenes para mejorar el proceso educativo. Dentro de las principales preocupaciones se encuentra la denuncia que hacen las universidades por la mala formación matemática con que los jóvenes llegan a estas instituciones, el efecto que implica el uso de la calculadora para la resolución de estos exámenes, así como también preocupa el condicionamiento que las pruebas pueden provocar en la actividad académica cotidiana, específicamente en la metodología de trabajo y en las evaluaciones regulares del proceso educativo, entre otras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un poco de historia. Los cálculos eran la preocupación principal de nuestros antepasados, que promovieron el desarrollo de las matemáticas. Así nacieron los logaritmos, en los últimos años del siglo XVII. Decía Laplace en aquello años, “el uso de los logaritmos, acortó el trabajo y duplicó la vida de los astrónomos”. En los últimos años de la década 1970 a 1980 se popularizaron las calculadoras. Que no son tan viejas. Yo, no las use. En 1972 entre a la facultad de química y no tenía calculadora. Un año antes, me compre una de las mejores reglas de cálculo. Para usarla deberíamos saber tanto, que nos calificarían de genio en la actualidad ¿Cuál es entonces la premisa de mi pensamiento? “Saber matemática no es saber hacer cuentas”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ésta investigación se sitúa en la problemática del fracaso escolar en Matemática en estudiantes de Nivel Medio (Corica, Otero, 2005; Gascón et. al., 2001). Nuestro objetivo fue estudiar las ideas de alumnos y profesores acerca del saber matemático, su enseñanza y aprendizaje, para poder explorar los posibles factores que intervienen en el fracaso en Matemática de los estudiantes. En esta investigación se abordan aspectos didácticos a partir de la Teoría Antropológica de lo Didáctico (Chevallard, 1999), aspectos cognitivos a partir de la Teoría de Aprendizaje Significativo (Ausubel, 1976) y aspectos epistemológicos vinculadas al saber matemático a partir de las ideas de Klimovsky (2000). En este trabajo se presentan resultados de dos estudios realizados con estudiantes de Nivel Medio y un tercer estudio vinculado con profesores del mismo nivel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los estudiantes se enfrentan diariamente al reto de comunicarse haciendo uso del lenguaje propio de las matemáticas al abordar las diferentes actividades de clase. Sin embargo, ellos presentan dificultades que le impiden realizar algunos procesos matemáticos y saber cuál estrategia emplear. Esta situación no les permite interpretar y argumentar adecuadamente los procedimientos efectuados. La pista algebraica es un recurso facilitador del desarrollo de las competencias matemáticas de comunicación y formulación, comparación y ejercitación de procedimientos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Para conocer cómo están de conocimientos matemáticos elementales los alumnos que acceden por primera vez en las diplomaturas de maestro a la materia de matemáticas, se les han aplicado las pruebas de diágnóstico para alumnos de sexto curso de primaria de las comunidades autónomas de Murcia y Madrid. La muestra la forman alumnos de las universidades de Murcia, La Laguna y Oviedo y de varias especialidades. Los resultados se analizan por ítem, por variables de corte, se efectúa un análisis descriptivo e inferencial y se comparan los resultados de las dos pruebas con los obtenidos por los alumnos de sexto curso de primaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Para conocer un todo no es necesario el conocimiento exhaustivo de cada uno de los elementos que lo componen. Basta con determinar sus elementos fundamentales y saber qué leyes determinan la relación entre ellos y los demás. Solamente un todo pequeño (finito) puede conocerse por completo, elemento a elemento. Los todos más vastos (infinitos), jamás. Kublai se da cuenta de que no hay otro modo de conocer conjuntos tan grandes. El conjunto de los números naturales se conoce a partir de un elemento (uno) y de una ley de formación (uno más uno: dos). Un espacio vectorial se conoce a partir de los vectores de su base y del modo en que operan (suman y multiplican) entre ellos y con los escalares de un cuerpo K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La función de Marco es describir a Kublai ciudades reales mediante el relato de sus características. Pero Kublai quiere saber ahora si una serie de características que él reúne corresponde a las de una ciudad real. La función de Kublai es inversa de la de Marco, pero está por ver si su dominio no es vacío.