9 resultados para Perspectiva comparada
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Este curso presenta un avance en la construcción de escenarios educativos para el aprendizaje de las matemáticas desde el cual se ofrece posibilidades a los estudiantes para encontrar las razones del por qué y para qué del propósito del proceso educativo. Los escenarios de aprendizaje construidos son las relaciones entre espacialidad, identidad y territorialidad, y la cual integra como eje temático contenidos de áreas curriculares como ciencias naturales, educación física, matemáticas, ciencias sociales y lenguaje. Esta relación permite identificar problemas que tienen contenidos importantes desde una perspectiva del aprendizaje, de la importancia sociológica de aprender en la escuela y de la posición misma de los niños.
Resumo:
En este trabajo, los autores se cuestionan el surgimiento de una conjetura en la resolución de un problema en el contexto del pensamiento matemático avanzado, en una comunidad de práctica de estudiantes para profesor de matemáticas. Mediante una investigación de diseño, se logró concluir que las refutaciones e interacciones que se dan de forma individual y dentro de las comunidades de aprendizaje, permiten que las intuiciones se movilicen, estableciendo un lenguaje común y una empresa compartida (Wegner, 2001), en la resolución de problemas.
Resumo:
Teniendo en cuenta que la educación tradicional es vista como un modelo pedagógico que entre otras: i) se enfoca en desarrollar en los estudiantes conocimientos algorítmicos, ii) hace un énfasis en la ejercitación de procedimientos, iii) no tiene en cuenta el desarrollo social del individuo dentro de una comunidad y tampoco se enfoca en el proceso que tiene un estudiante al desarrollar una actividad con determinado objeto matemático; hoy en día se propende por buscar perspectivas que le permitan a los estudiantes encontrarle sentido a las actividades que el profesor lleva al aula. A la luz de lo anterior, en Colombia han surgido diversas tendencias que han buscado la renovación pedagógica, didáctica y conceptual en la educación escolar, enmarcadas –la mayoría de estas propuestas– dentro de la idea de que los estudiantes se relacionen directamente con el conocimiento, mientras que el profesor toma una postura de orientador del proceso de aprendizaje del estudiante. Teniendo en cuenta lo anterior, muchos profesores han buscado cambiar sus prácticas tradicionales de enseñanza, un ejemplo de ello lo encontramos en el colectivo de profesores de la Institución Educativa Distrital Colegio Paulo Freire de la localidad de Usme (Bogotá, Colombia); donde los profesores –en concordancia con las ideas del pedagogo Paulo Freire– comparten, como parte de su proyecto educativo, el hecho de ver a la enseñanza como un proceso que debe generar en los estudiantes una comprensión crítica de la realidad social, política y económica en la que él está inmerso.
Resumo:
La enseñanza del Análisis Matemático en 1o y 2o de Bachillerato y primer año de Universidad, presenta unos problemas, asociados a los fenómenos didácticos inherentes al estudio de las Matemáticas, que es necesario tipificar a partir de la modelización del conocimiento matemático y del proceso de enseñanza escolar. En este Proyecto se estudian los conceptos elementales del Análisis Matemático –límite, continuidad, derivada e integral desde la perspectiva de los obstáculos epistemológicos y de los actos de comprensión (Sierpinska, 1997), en cuanto al saber escolar (detectado en los manuales), el saber enseñado (que figura en los apuntes de los profesores) y el saber del alumno (identificado por medio de sus respuestas a un cuestionario) tratando de extraer datos que faciliten el uso de estrategias de enseñanza-aprendizaje de estas nociones en situaciones de enseñanza adecuadas.
Resumo:
O projecto de investigação “Estudio sobre la enseñanza-aprendizaje de conceptos fundamentales del análisis matemático (limite, continuidad, derivada e integral) en manuales y en estudiantes del Bachillerato-LOGSE y de primer curso universitario” parece muito interessante nomeadamente quando pretende estudar os problemas relacionados com o ensino e aprendizagem da Análise Matemática nos dois anos do Bachillerato e no primeiro curso da Universidade, e juntar na mesma equipa professores dos dois níveis de ensino envolvidos. O facto de se ligar o ensino da Análise Matemática no pré-universitário e no universitário é um aspecto inovador na investigação em educação matemática.
Resumo:
La investigación que reportamos, da cuenta de un estudio sobre la comprensión del concepto Elipse en estudiantes entre 16 y 18 años, bajo un enfoque cognitivo, donde se utiliza los modos de pensamiento de Anna Sierpinska como marco teórico y, estudio de casos como diseño metodológico. Nuestra problemática se sitúa al abordar la elipse solamente a través de las ecuaciones cartesianas, afirmamos que estas técnicas no son suficientes para lograr una comprensión profunda del concepto, cuando decimos comprensión profunda, estamos pensando en que el estudiante pueda comprender la elipse en los modos: Sintético-Geométrico (como sección cónica en el espacio/curva que la representa en el plano), Analítico-Aritmético (como pares ordenados que satisfacen la ecuación de la elipse) y Analítico - Estructural (como lugar geométrico). A lo largo de la investigación evidenciamos que los estudiantes logran una mayor comprensión del concepto elipse cuando se enfrentan a situaciones donde interactúan los tres modos de pensar.
Resumo:
Essa comunicação apresenta uma pesquisa em desenvolvimento que busca investigar o currículo de Matemática das escolas estaduais de Ensino Médio do Estado do Rio Grande do Sul, sob a ótica das representações semióticas como possibilidade teórica, didática e metodológica para o desenvolvimento dos conhecimentos e procedimentos matemáticos que fazem parte desse nível de escolaridade. No presente momento, a investigação de cunho qualitativo está centrada na análise do currículo de Ensino Médio e nos projetos pedagógicos das escolas pertencentes à área de abrangência da pesquisa. Também fazem parte do estudo as avaliações nacionais propostas para os egressos do Ensino Médio. Resultados preliminares apontam a necessidade de se trabalhar com “outras representações”, principalmente quando os documentos analisados consideram a resolução de problemas como princípio para a organização das atividades escolares, o que, entende-se, indica uma abertura para o trabalho com semiótica na matemática escolar do Ensino Médio.
Resumo:
Este artículo hace parte del trabajo “Criterios y Prácticas de Evaluación en torno a la Multiplicación”, tesis de maestría en proceso, la cual intenta contribuir al desarrollo del proyecto de investigación “Modelos y Prácticas Evaluativas de las Matemáticas en la Educación Básica. El caso del Campo Multiplicativo”, proyecto financiado por Colciencias y la Universidad Pedagógica Nacional (C´odigo1108-11-11328). Se realiza en este escrito un análisis del proceso de aprendizaje en torno al concepto de multiplicación desde la perspectiva sociocultural. Es pertinente señalar que la multiplicación es un concepto que se encuentra estrechamente relacionado con otros como: división, fracción, razón, proporción, función lineal,. . . y que conforman lo que Vergnaud (1994) ha denominado el Campo Conceptual Multiplicativo (CCM), por lo que su aprendizaje integra la necesidad de conectar estos conceptos con un campo de problemas y situaciones de tipo multiplicativo. En este sentido cobra importancia la cita de Sfard, en tanto, por ejemplo el aprendizaje de este concepto requiere un largo periodo de tiempo. En la primera parte del artículo se plantean algunos presupuestos teóricos que se comparten y ayudan a fundamentarlo, posteriormente se explicita qué es lo que se entiende por aproximación sociocultural del aprendizaje de la multiplicación, integrando la noción de competencia multiplicativa y finalmente se presenta los análisis de dos ejemplos en los cuales se muestra la complejidad de la multiplicación, en tanto se videncia el desarrollo de competencias cada vez más complejas.
Resumo:
Con el propósito de superar algunas dificultades de los profesores en la integración de tecnologías en la enseñanza de las matemáticas, se presenta una secuencia de análisis de las trasformaciones geométricas de la función exponencial natural, definida por f(x)=e^ax, que se apoya en el uso del GeoGebra. Tal secuencia permite caracterizar familias de curvas asociadas a la expresión anterior, a partir del análisis de las transformaciones geométricas “deformación” y “reflexión” experimentadas por estas curvas tras la variación del parámetro a. En el diseño de la secuencia se tomó en cuenta aspectos de teóricos, instrumentales y didácticos, que se consideran pertinentes para realizar el análisis. El uso de esta secuencia favorece el desarrollo de las capacidades para la integración eficiente de las tecnologías en la enseñanza de la Matemática.