17 resultados para Perry
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Esta publicación, resultado del “Programa de desarrollo profesional de profesores de matemáticas de Escuelas Normales Superiores”. El libro consta de dos partes: la primera, incluye dos artículos de los tutores del Programa y la segunda, incluye once artículos de grupos de profesores que participaron en el Programa en representación de sendas Escuelas Normales Superiores.
Resumo:
En el período comprendido entre septiembre de 2001 y octubre de 2002, una Empresa Docente de la Universidad de los Andes adelantó el proyecto de investigación "Rutas pedagógicas de las matemáticas escolares. Una mirada a la práctica del profesor", con el propósito de acopiar información que contribuyera a lograr descripciones de la práctica de los profesores de matemáticas en instituciones de educación de básica secundaria de Bogotá. Tales descripciones, por la gran y variada cantidad de aspectos que consideran, pueden ayudar a conocer y comprender cómo suceden la enseñanza y el aprendizaje de las matemáticas en medio de prácticas socioculturales. La práctica docente del profesor de matemáticas observada desde el lente de la conceptualización construida, se percibe como una experiencia que difiere en alguna medida de la denominada "tradicional", pero que aun así no alcanza a transformar la manera de abordar las matemáticas.
Resumo:
El objeto de investigación del estudio que aquí se presenta es la serie de actores, factores y relaciones entre ellos que, dentro de la institución educativa y su organización en secundaria, determinan la calidad de la formación matemática que logran los estudiantes colombianos. El problema de investigación de PRIME I se concentra en el estudio de procesos asociados con la enseñanza de las matemáticas, antes de que éstos se concreticen en la interacción directa entre profesor y estudiante en el ámbito restringido del salón de clase, es decir, antes de que lleguen a generar un producto en la manera como los estudiantes construyen (o no) su conocimiento matemático. Para dar cuenta de la indagación hecha, este libro se organiza de la siguiente manera. El primer capítulo formula la problemática general que abordó el proyecto. El segundo capítulo muestra cómo se inscribe el espacio de la investigación en el marco de la literatura de la comunidad internacional de educación matemática. El tercero presenta las consideraciones conceptuales que sustentan la aproximación del proyecto a la problemática de la calidad de las matemáticas en secundaria desde la perspectiva de la insitución educativa. El cuarto capítulo expone los principios y diseño metodológicos seguidos en el proceso de investigación. En el quinto capítulo se exponen los resultados generales del proyecto en términos de lo sucedido en el Sistema Institucional de la Educación Matemática (SIEM) en los colegios participantes y de la influencia de la estrategia de desarrollo profesional realizada con ellos en sus sistemas. El último capítulo retoma una de las grandes preguntas iniciales acerca de la pertinencia del modelo del SIEM para abordar la realidad de la enseñanza de las matemáticas en los colegios colombianos y se presenta una reformulación de éste; también presenta las particularidades metodológicas del proceso de reformulación teórica del modelo del SIEM.
Resumo:
Este libro es resultado de la experiencia vivida por un grupo de investigadores de "una empresa docente", centro de investigación en educación matemática de la Universidad de los Andes, Colombia, y un grupo de directivos-docentes y profesores de matemáticas en el marco del proyecto PRIME I. El proyecto reunió a quince colegios de Bogotá, entre distritales y privados, para realizar una mirada sobre algunos elementos que pueden ser factores relevantes para la calidad de la formación matemática que los colegios dan a sus estudiantes. Otro objetivo del proyecto era diseñar en detalle una estrategia de desarrollo profesional, aplicarla y evaluar sus efectos en los participantes. La naturaleza de la problemática que se aborda en este proyecto requiere que en los colegios se genere una dinámica que favorezca los procesos de reforma educativa para el mejoramiento de la calidad de la educación matemática en secundaria. Para ello es necesario involucrar tanto a directivos como a profesores de matemáticas en actividades que promuevan la reflexión de ellos acerca de su propia práctica --directiva y docente, respectivamente-- y que potencien su capacidad para ser gestores y participantes activos del cambio. El anterior es uno de los supuestos que fundamentan la estrategia de desarrollo profesional aplicada en el proyecto. En este libro se presenta una visión completa de la estrategia de desarrollo profesional implementada con el grupo de directivos y profesores de los colegios participantes en el proyecto PRIME I. El libro está organizado en tres secciones. La primera presenta las bases que sustentan el esquema de desarrollo profesional, describe con algún detalle en qué consistió la estrategia y cómo estuvo secuenciada, y discute algunas de las tensiones que se presentaron en la aplicación de la estrategia al involucrar a los participantes en actividades de investigación e innovación. La segunda sección del libro incluye los artículos producidos por algunos de los directivos de los colegios participantes, y la tercera contiene los artículos de algunos de los profesores acerca de su experiencia de indagación e innovación en sus aulas de clase.
Resumo:
Durante el desarrollo de un curso de geometría plana para futuros profesores de matemáticas, profesora y estudiantes conforman una comunidad cuyo propósito es aprender a demostrar. La empresa del curso es construir un sistema axiomático para la geometría plana. Las tareas específicas están asociadas, en su mayoría, a situaciones problema cuya resolución involucra a los estudiantes en una actividad demostrativa en la que la geometría dinámica y la interacción social en el aula, gestionada por la profesora, juegan papeles esenciales. En este documento damos detalles de esta innovación.
Resumo:
En este artículo se expone una propuesta de enseñanza para presentar el teorema de Pitágoras a alumnos de educación media. También se refieren algunos detalles del análisis que fundamentó la propuesta. Esta incluye trabajo de los estudiantes en torno a la desigualdad triangular, a la relación pitagórica y a expresiones algebraicas.
Resumo:
Esbozamos la teoría de la mediación semiótica con la cual es posible estudiar y comprender el papel de un profesor que decide aprovechar las características que tienen diferentes herramientas, por ejemplo los programas de geometría dinámica, usadas como mediadoras para favorecer procesos de aprendizaje, desde un punto de vista sociocultural.
Resumo:
Nos proponemos estudiar las construcciones de polígonos regulares con regla y compás con la asistencia del GeoGebra, y presentar una secuencia de acciones que pueden resultar de base para enseñar estos conceptos. Para un mejor aprovechamiento de este trabajo, los lectores deberían tener nociones de geometría, particularmente estar familiarizados con los problemas de construcciones con regla y compás. También es recomendable tener conocimientos de estructuras algebraicas, especialmente de extensiones de cuerpos. Por estos motivos está dirigido a docentes de educación terciaria y a estudiantes que tengan los conocimientos mencionados anteriormente.
Resumo:
En este cursillo trabajaremos una propuesta de ingeniería didáctica para el estudio de las cónicas como lugares geométricos a partir de un trabajo experimental con espejos y su modelación con geometría dinámica.
Resumo:
El objetivo de esta charla es presentar algunos resultados recientes sobre teorías elementales en matemáticas para el desarrollo del talento en matemáticas. En particular, se mostrarán algunos resultados relacionados con la teoría de grafos y la teoría reticular, ambas, teorías matemáticas que han venido siendo adaptadas por el Grupo Yaglom de la Universidad Sergio Arboleda para los cursos de pretalentos y talentos en matemáticas.
Resumo:
En años recientes, un cuerpo creciente de investigaciones en didáctica de las matemáticas han identificado algunas dificultades en relación con el aprendizaje de contenidos temáticos, procesos y contextos relacionados con el pensamiento espacial y sistemas geométricos, siendo comúnmente atribuidas a causas de orden epistemológico, cognitivo, curricular y didáctico. En este sentido se revela como prometedor el estudio del proceso de integración al currículo y a las prácticas escolares, de recursos, concretamente lo que se refiere a materiales manipulativos. Esto con la intención de fortalecer en los estudiantes los conocimientos adquiridos para resolver algunos problemas de su entorno escolar y cotidiano, a medida que avanza su proceso de aprendizaje.
Resumo:
A partir de este trabajo se busca establecer una relación entre el análisis epistemológico de la matemática y los procesos de enseñanza-aprendizaje de la geometría, centrados en un estudio de los problemas que históricamente han fundamentado la integral, desde la postura de resolución de problemas, las ventajas e implicaciones para el trabajo en el aula, el docente y el estudiante. Se hace una presentación del trabajo realizado geométrica y analíticamente para obtener las fórmulas del cálculo de área y volumen de algunas figuras, encaminado a un estudio sobre la importancia del tratamiento de situaciones problema para la enseñanza de la geometría, partiendo de los aportes que desde las situaciones históricamente abordadas se pueden realizar al conocimiento del profesor y los aspectos que puede tener en cuenta para orientar la enseñanza.
Resumo:
En esta charla se presentará el trabajo realizado durante el año 2010 por el grupo Nuevas Tecnologías de EDUMAT-UIS coordinado por el Dr. Martín Eduardo Acosta Gempeler. El grupo viene realizando un trabajo de capacitación a profesores de varios colegios del área metropolitana de Bucaramanga en cuanto a la implementación de software de geometría dinámica en la enseñanza de diferentes conceptos geométricos en secundaria.
Resumo:
Una secuencia didáctica se entiende como un sistema de reflexión y actuación del profesor en donde se explicitan aquellos aspectos del quehacer didáctico fundamentales a toda acción de enseñanza y aprendizaje, y en el que participan estudiantes, docentes, saberes y el entorno. En la secuencia didáctica a la que se refiere esta ponencia, propuesta para la enseñanza de la semejanza, los fractales serán el recurso a través del cual se identificarán las características y propiedades de la semejanza. En la planeación se tuvieron en cuenta la relación intrafigural y las transformaciones geométricas propuestas por Lemonidis, como referente teórico para analizar el concepto de semejanza.
Resumo:
Reconociendo la importancia que tienen los algoritmos en el proceso de resolución de problemas, particularmente en la geometría, se identificaron algunas formas en las que se usan algoritmos que son conocidos para los resolutores, durante la resolución de algún problema. A tales formas se les ha dado el nombre de uso de algoritmos y, específicamente, se describen y se muestran evidencias de los usos relacionados con la obtención de nueva información que permita ampliar los caminos considerados para la solución del problema.