9 resultados para PERSONA
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Este documento reporta los resultados de un estudio exploratorio aplicado a estudiantes de secundaria que presentan problemas de equiprobabilidad y centración en ejercicios de probabilidad basados en el razonamiento proporcional. Los problemas propuestos a los estudiantes han sido analizados por Green, Papinni, Fischbein y Gazit en investigaciones previas, de esta manera, nuestro aporte consiste en proponer una extensión a los resultados obtenidos por estos autores a partir de marco conceptual SOLO Taxonómico propuesto por Biggs y Collins (1982), que consiste en cinco niveles presentes en el ciclo de aprendizaje de una persona dentro de cada uno de los estadios de Piaget.
Resumo:
Esta experiencia se realizó en el Colegio Nuestra Señora de Guadalupe. El proceso educativo debe ser continuo, para facilitar la formación de una persona autónoma, trabajamos coordinadamente con vistas a la inserción de los alumnos provenientes del Nivel Medio en forma no traumática en aquellas Facultades de la Universidad Nacional del Litoral, en las cuales Matemática y Química son áreas relevantes en los respectivos planes de estudio. La adquisición de aprendizajes significativos se realiza mediante la claridad informativa y la aplicación sistemática, graduada y diversa de los contenidos a situaciones cotidianas que profundizan la comprensión de los conceptos. La situación seleccionada para esta experiencia es un tema de mucha trascendencia, el tabaquismo, que permitió integrar los contenidos de Matemática, Química y Computación.
Resumo:
Se indaga en los desplazamientos entre herramientas de comunicación que ponen en juego profesores a la hora de comunicar qué y cómo cambia en una situación, en el marco de una línea de investigación en Pensamiento y Lenguaje Variacional (Proyecto Fondecyt Nº1030413 y Proyecto Diumce 06/07). Adscribimos a una mirada sistémica en la que entendemos a las matemáticas como una actividad humana en donde cobra vital importancia la persona haciendo matemáticas y no sólo el producto matemático. Por ello resulta relevante considerar -en la praxis educativa- las negociaciones y búsqueda de consenso entrelazadas éstas, con las acciones cognitivas de la persona al momento de enfrentarse a la solución de un problema. Asumimos una naturaleza de la noción de variación como red semántico operacional transversal, que imbrica distintos contenidos escolares de ciencia experimental y de matemática, particularmente aquellos de tiempo y velocidad. Entendemos al tiempo cotidiano formado por una red compleja de intencionalidades y coordinaciones que se estructuran a partir de las necesidades de coordinación con lo otro, con los otros y de las proyecciones intencionales hacia un futuro y un pasado, y, al tiempo matemático en su calidad de parámetro y figurado sobre la base de la metáfora de una distancia horizontal. A continuación se analizan, desde ese marco conceptual, las herramientas a que recurren profesores para comunicar cambios en una situación específica desarrollada en el marco las actividades del Proyecto de Investigación Las representaciones docentes del Cambio.
Resumo:
El presente texto muestra una investigación que trabaja la enseñanza-aprendizaje de aspectos asociados al límite como aproximación optima, desde un análisis teórico (apoyado en APOE) que parte de una descomposición genética del objeto límite y brinda los primeros indicios de las construcciones mentales que poseen los estudiantes, luego se complementa con un parte de diseño e implementación de actividades en el aula con el ciclo de enseñanza ACE. Como la base es una investigación sobre la propia práctica del docente, se trata de un primer avance en este campo, lo que implica un estudio abierto a cualquier persona que requiera ampliarlo y/o complementarlo.
Resumo:
Muchos son los líquidos (aceite, vinagre, leche, vino, licor...) y otros productos (sal, especies, arroz...) que son descritos en las recetas de cocina en relación al volumen. A veces se expresan dichos volúmenes en unidades precisas (litros, centilitros, mililitros...) pero en muchas ocasiones se presuponen las capacidades de determinados contenedores (cucharas, tazas, vasos...) para “aclarar” los volúmenes implicados. Cuando le recomiendan “ponga dos tazas de arroz por persona”, si usted no es del club de los iniciados, su estupor puede ser mayúsculo pues al abrir el armario de la cocina encontrará tazas de lo más diverso dispuestas a ser “la taza” recomendada.
Resumo:
Toda persona que se dedica a enseñar sabe que la única manera de aprender algo es haciéndolo. Se aprende a montar en bicicleta montándola, como se aprende a escribir escribiendo; lo mismo ocurre con las matemáticas. No se trata de primero aprender matemáticas y luego ponerlas en práctica: se trata de aprender matemáticas practicándolas. Pero no es fácil encontrar un contexto en el que ejercitarnos en las matemáticas.
Resumo:
En contra de lo que algunos creen, es posible abordar con éxito muchos problemas cotidianos de probabilidad, sin más instrumentos que una mente ordenada. A partir de un sencillo juego, intentaremos demostrar el mito de que el análisis del polémico sorteo de excedentes de cupo está vedado a cualquier persona que no sea de ciencias.
Resumo:
Con este material pretendemos divulgar la matemática implicada en los números de identificación tales como NIF, ISBN, EAN... La aritmética modular se utiliza para lijar el dígito de control, y algoritmos sencillos permiten al ordenador descubrir muchas falsificaciones o posibles errores en el número de identificación de la tarjeta, producto o persona. Los esquemas de codificación más usuales detectan todos los errores simples, esto es, cuando se confunde un dígito por otro pero, sin embargo, no descubren otros tipos de errores que, aunque son menos frecuentes, son posibles. El álgebra y la divisibilidad ayudan a elegir esquemas de codificación mas seguros.
Resumo:
¿Bajo que condiciones una situación matemática es un problema para una persona? Tiene que interesarle y representar un reto, de forma que se sumerja en ella para intentar su resolución. Pero además, se detectan otras características en el proceso de generación y resolución de problemas: —Requiere un tiempo muy variable, imposible de predecir de antemano.— Lo que se busca suele ser bastante impreciso; las preguntas que perfilan un problema van surgiendo sincronizadas con las conjeturas y los resultados parciales o aproximados que se van encontrando. —Un problema puede abordarse con diferentes niveles de rigor y precisión. —La analogía es un recurso valioso, que puede guiar la búsqueda de soluciones.— Los medios disponibles (como una calculadora o un ordenador) abren nuevas vías de resolución y análisis que, de otro modo, estarían vedadas.