7 resultados para Movimiento.
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La introducción a la clase de matemáticas de la calculadora TI 92 Plus y otros dispositivos, tales como el CBR, están generando una nueva cultura matemática, caracterizar algunos rasgos de éste fenómeno educativo en la modelación del movimiento pendular es el propósito central de la presente investigación. El trabajo de los estudiantes permitió observar en la práctica los constitutivos del marco teórico del proyecto de incorporación de nuevas tecnologías al currículo de matemáticas de Colombia, como son: mediación instrumental, representaciones ejecutables, cognición situada, solución de problemas, fluidez algorítmica y fluidez conceptual.
Resumo:
Esta investigación de corte cualitativo tiene el objetivo de estudiar cómo un grupo de estudiantes mexicanos de 16-18 años logra significar la relación entre las gráficas cartesianas de distancia-tiempo, velocidad-tiempo y aceleración-tiempo al interactuar en un entorno digital. Nuestra interpretación se basa en asumir que el conocimiento resulta de las acciones del sujeto cognoscente que se acerca a su objeto de conocimiento provisto de artefactos culturales de mediación. Las gráficas cartesianas atadas a la animación promueven en los estudiantes una actitud para expresar y explorar sus ideas a través de las representaciones simbólicas que ellos mismos producen. Los resultados sugieren que este tipo de experiencias puede ayudar a construir una sólida base para acceder a las ideas del Cálculo.
Motivación socioepistemológica de la función senoidal a través del movimiento circular como metáfora
Resumo:
En este trabajo se presenta una secuencia didáctica cuyo marco teórico es la socioepistemología, en la que se toma en cuenta la dimensión didáctica y cognitiva. Para realizarla, usamos una metáfora que nos permita identificar a través de una actividad experimental, al manipular una cuerda y usando una torna mesa, los principales elementos de la función seno.
Resumo:
Con este trabajo se da cuenta de los aprendizajes que logran los estudiantes del nivel bachillerato al trabajar con un problema de una situación real de movimiento empleando tecnología como son los sensores (dispositivos transductores) y calculadora graficadora. La aproximación socioepistemológica sirvió de sustento para realizar un análisis previo, el cual nos permitió identificar tres usos de las gráficas: construcción de gráficas utilizando la regla de correspondencia entre dos variables, gráficas por operaciones gráficas y la graficación por medio de la simulación de un fenómeno físico empleando tecnología. El trabajo con estudiantes nos permitió caracterizar el uso de las gráficas a partir de las actividades de modelación con las características del Comportamiento Tendencial de las Funciones.
Resumo:
En el campo de la matemática educativa, el concepto de periodicidad es un tema muy poco explorado, a pesar de encontrarse inmerso prácticamente en el currículo escolar de la matemática. Este concepto es ampliamente utilizado en diversos tópicos de matemáticas, sin embargo, solo existe poco trabajo de corte epistemológico al respecto, donde se encuentra el trabajo de Shama (1998), este estudio cognitivo nos plantea una problemática sobre la comprensión del estudiante, cuando éste concibe la periodicidad como un proceso y no puede transformarla en objeto. Esto conduce al estudiante a relacionar fenómenos no periódicos como periódicos y a tener preferencia por identificar un periodo de un fenómeno periódico que no es necesariamente en forma correcta. La problemática es retomada para la investigación, considerando los contextos discreto y continuo del concepto. El objetivo es diseñar una situación de tal forma que el estudiante de una nueva explicación sobre la concepción de proceso y pueda alcanzar su transformación al objeto del concepto de periodicidad. Para tal propósito se ha formulado una epistemología de la periodicidad, donde se han hallados ciertos elementos (repetición regular, desplazamiento lineal como el argumento de los fenómenos periódicos, y el comportamiento periódico de una función como un argumento contextual, la manifestación del movimiento en un todo y no en un momento, que permitan la construcción de la periodicidad. El concepto de periodicidad generalmente es tratado en el currículo como una propiedad de cierta clase de funciones llamadas periódicas. Sin embargo es factible pensar la orientación del concepto de periodicidad a través de la noción de comportamiento tendencial de las funciones, donde la epistemología del concepto esté basada en situaciones de tendencia de un comportamiento periódico. De la epistemología de la periodicidad tiene como propósito ser la base de una descomposición genética que incluya los elementos y su relación. Nuestro marco teórico en la investigación es el de la teoría APOE (Acción, Proceso, Objeto, Esquema) y el diseño de actividades, su implementación y la recolección de datos con estudiantes de precálculo y cálculo, a través de la metodología que señala la propia teoría, el ciclo ACE. Los resultados se presentan en la presentación de la investigación.
Resumo:
Actualmente las experiencias de modelación y el uso de tecnologías digitales en las aulas de clase son temas de gran interés para los profesores, formadores e investigadores en Educación Matemática. Por un lado, la modelación matemática favorece el uso de la Matemática como un instrumento para el abordaje de situaciones y fenómenos del mundo. Por otro lado, integrar las tecnologías digitales (como simuladores, videojuegos, entre otros)en la enseñanza de las Matemáticas y las Ciencias, en particular de la Física, permite vincular los hechos e ideas asociadas a un fenómeno físico, entre sí y con marcos teóricos que los sustentan. Al fusionar la modelación y las tecnologías digitales a través de la simulación se obtienen entornos de aprendizaje que promueven el desarrollo de conocimiento y habilidades de pensamiento científico en los estudiantes. Sin embargo, la mayoría de las investigaciones en esta área están orientadas hacia una mayor comprensión de las formas de usar eficientemente estos simuladores en las clases de ciencias, dejando de lado al proceso de su elaboración como una verdadera oportunidad para aprender Matemática y otros saberes asociados. En este sentido, el presente trabajo describe la secuencia de pasos de construcción creada para elaborar un simulador del movimiento en caída libre con GeoGebra. Esto con el doble propósito de (i) develar la Matemática implícita en los procesos de construcción de simuladores con GeoGebra y (ii) motivar la creación de otros simuladores con un propósito similar al mencionado en este trabajo.
Resumo:
El estudio de predicción y variación de R. Cantoral (2001), así como la evolución a través de los marcos epistémícos del movimiento de: Aristóteles, Galileo y Newton (de la predicción de un estado conociendo un estado de facto Muñoz, 2000), proporcionan la base epistemológica para una epistemología inicial de la matematización del movimiento, y la búsqueda de los mecanismos de transición del binomio de Newton a la serie de Taylor; para ello revisamos textos antiguos, artículos relacionados con la investigación y textos escolares vigentes. Lo anterior nos proporcionó referentes para analizar la construcción de significados con los estudiantes de la carrera de Ingeniería Civil, así como incorporar contextos físicos donde las estrategias vertidas por los estudiantes para resolver problemas propios de la física, son de naturaleza tal que las ideas de cambio y variación están presentes (Solís, 1999). Nuestros resultados permitirán que los mecanismos de transición entre el binomio de Newton y la serie de Taylor profundicen las cuestiones teóricas y metodológicas para establecer la reorganización del discurso matemático escolar desde la matematización del movimiento y considerando como eje organizador la noción de predicción.