18 resultados para Lo político
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Distinguiremos tres contribuciones de la Teoría Antropológica de lo didáctico a la formación del profesorado de secundaria: la manera de plantear el problema de la formación y delimitar el ámbito empírico en el que éste debe situarse y abordarse; la propuesta y experimentación de dispositivos de formación; y, finalmente, la puesta en evidencia de fenómenos que inciden en el desarrollo de esta formación dificultándola o facilitándola. Los resultados obtenidos durante estos últimos años con experiencias concretas de formación del profesorado de matemáticas de secundaria ponen de manifiesto algunas dolencias que no parecen poder remediarse sin una cooperación estrecha entre la propia formación, la investigación en didáctica de las matemáticas y este ente todavía desdibujado que es la profesión de profesor de matemáticas.
Resumo:
La experiencia que se presenta pretende valorar la intuición optimizadora en estudiantes de secundaria obligatoria. El problema que se aborda es, dado un conjunto de cantidades, elegir entre ellas las que sumen una cantidad exacta o lo más cercana a ella. El resultado de la experiencia de aula en un contexto específico ha permitido identificar la poca preparación de los estudiantes para este tipo de tarea. La principal conclusión es que los estudiantes están preparados para sumar cantidades, pero les resulta muy difícil elegir los sumandos que sumen una determinada cantidad, desconocen estrategias y son incapaces de inventar heurísticos que les lleve a conseguir el objetivo. La reflexión, consecuencia de la experiencia realizada, es que a los problemas de optimización se les dedica poca atención en la enseñanza obligatoria a pesar de ser de gran utilidad en la vida cotidiana.
Resumo:
El presente trabajo se realiza bajo la visión Socioepistemología la cual adopta a las prácticas sociales como el motor que permite la construcción del conocimiento. Desde esta perspectiva nuestro trabajo toma las prácticas de modelación matemática como el eje que guía nuestro diseño; donde el objetivo es la construcción de lo Inversamente Proporcional (IP) por medio de la interacción de los modelos analítico, numérico y el planteamiento de la situación. El papel que le otorgamos al contexto es primordial para poder dotar de significado lo IP. Presentamos el desarrollo y los resultados obtenidos del diseño de aprendizaje elaborado con base en la Ingeniería didáctica de Artigue (1998). El reporte es parte de una investigación en curso.
Resumo:
Las deducciones que a lo largo de la historia se han realizado en torno al teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Algebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.
Resumo:
Las deducciones que a lo largo de la historia se han realizado en torno al Teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del Teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del Teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Álgebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.
Resumo:
En este artículo mostraremos unas extensiones del Teorema de Pitágoras en su acepción geométrica, tomando en consideración el área de las figuras geométricas que están sobre los lados de un triángulo rectángulo y de esta manera ver que se cumple la relación Pitagórica para cualquier tipo de figuras que cumplan cierta condición. En particular, esta extensión la vamos a realizar usando las cuadraturas del rectángulo o del triángulo, como por ejemplo para el triángulo equilátero y luego para los semicírculos o las lúnulas, para lo cual cuadratura es lo mismo que decir área.
Resumo:
En este trabajo se presentan y analizan algunos resultados obtenidos en un estudio sobre creencias, con respecto a las matemáticas y su enseñanza aprendizaje, de los estudiantes de la enseñanza media costarricense.
Resumo:
En el documento se realiza un análisis sobre las pruebas nacionales de Matemáticas para Bachillerato en Costa Rica, se incluye la opinión de una muestra de 249 profesores de esta disciplina pertenecientes a diferentes regiones educativas del país. Los resultados muestran que no existe consenso entre estos educadores respecto a la conveniencia de estos exámenes para mejorar el proceso educativo. Dentro de las principales preocupaciones se encuentra la denuncia que hacen las universidades por la mala formación matemática con que los jóvenes llegan a estas instituciones, el efecto que implica el uso de la calculadora para la resolución de estos exámenes, así como también preocupa el condicionamiento que las pruebas pueden provocar en la actividad académica cotidiana, específicamente en la metodología de trabajo y en las evaluaciones regulares del proceso educativo, entre otras.
Resumo:
En el presente trabajo se comparte una experiencia de aula que se realiza, utilizando el Origami, para introducir el trabajo con funciones cuadráticas, con estudiantes de la media académica. En el proceso de iniciación al cálculo, se estudió la relación entre el plegado de papel y la geometría, al desarmar un módulo cuadrado y analizar las cicatrices que quedan en él. Se relacionaron algunos elementos matemáticos presentes en el módulo, con los conceptos matemáticos que emergieron en las cicatrices y se analizaron algunas propiedades de los poliedros. Esto permitió el estudio de conceptos como rectas paralelas y perpendiculares, bisectrices y mediatrices y familias de poliedros, relacionando el área lateral de los poliedros con el tamaño del módulo y con el número de éstos, lo que llevó al estudio de familias de funciones, haciendo el tránsito por diferentes sistemas semióticos de representación y al interior de algunos de estos, llevando a los mismos estudiantes a que le asignaran significado y sentido a los conceptos estudiados, al poderlos manipular.
Resumo:
Lo periódico en la relación de una función y sus derivadas, en un contexto analítico queda en demostrar la veracidad de la proposición f periódica f´periódica usando las definiciones de derivada y de función periódica; sin embargo al trabajar en un contexto gráfico, podemos hacer evidente que el comportamiento de una función tiene dos componentes: el comportamiento en el eje X y otro en el eje Y; esta distinción es fundamental para distinguir entre algo periódico y algo que no lo es; al explorar dicha relación usando movimientos hemos encontrado movimientos que no son periódicos y cuya velocidad sí lo sería. En este trabajo reportamos algunas dificultades al enfrentarnos con esta relación en escenarios periódicos en los contextos analíticos gráficos y físicos.
Resumo:
La periodicidad como propiedad es identificada de manera natural por los individuos y resulta habitual el uso de los significados creados de forma compartida y que éstos se trasladen en contextos diferentes en donde son aplicados. Los resultados obtenidos en investigaciones como Buendía (2004, 2005a) y Alcaraz (2005) aportan no sólo elementos de corte cognitivo, sino herramientas que fungen como argumentos válidos en el reconocimiento de la naturaleza periódica. Lo periódico puede conformar todo un lenguaje, abarcando los ámbitos culturales, históricos e institucionales y procurándole un carácter útil al conocimiento matemático. La unidad de análisis es el elemento que tiende un puente entre un tratamiento empírico de la periodicidad y uno científico (Montiel, 2005), lo cual favorece una construcción significativa del conocimiento matemático. Nuestro marco teórico es la aproximación socioepistemológica la cual centra su atención en el examen de las prácticas sociales, entendidas como las acciones o actividades realizadas intencionalmente con un objetivo de transformación y con ayuda de herramientas que favorecen la construcción del conocimiento matemático, incluso antes que estudiar a los conocimientos mismos.
Resumo:
La presente investigación surge en el programa “perfeccionamiento en matemática para profesores de enseñanza media” realizado en el IUFM le Mirail, Universidad de Toulouse, Francia. El estudio consiste en el diseño de una propuesta didáctica para el aprendizaje de la ecuación vectorial de una recta en el espacio, en estudiantes de 16 a 18 años, el interés nace por la incorporación de estos temas en el curriculum nacional. Para el diseño de la propuesta se utiliza elementos de la Teoría Antropológica de lo Didáctico (TAD), donde se entenderá como organización matemática, a un conjunto de tipos de tareas, de técnicas o procedimientos para resolver estas tareas y de definiciones, propiedades y teoremas que permitan describir y justificar la resolución de la tarea. Entre los elementos que aportan en el surgimiento de la organización matemática, se distinguen, tipos de tareas como, establecer si puntos del plano o el espacio son colineales y determinar las condiciones para que un tercer punto sea colineal a dos puntos dados, en el plano o en el espacio.
Resumo:
El presente trabajo se inserta en la línea de investigación que intenta explicar las relaciones entre las prácticas sociales y la construcción social del conocimiento. Sostenemos que es en el ejercicio de las prácticas sociales donde los actores construyen herramientas que han de constituirse en su conocimiento y éstas a su vez modifican las prácticas. En este trabajo hemos elegido a las prácticas sociales de modelación y su relación con la construcción de lo exponencial como herramienta. Modelando el enfriamiento del silicón los actores construyen modelos y con ellos realizan predicciones, articulando los diferentes modelos con el fenómeno. Se hace énfasis en el análisis epistemológico y como es que lo exponencial se construye al ejercer la modelación.
Resumo:
Bajo la visión socioepistemológica, las prácticas sociales se reconocen como fundamentación del conocimiento matemático. Estas se reinterpretan para lograr su ingreso al sistema didáctico a través de situaciones en las que dichas prácticas se transforman en el argumento. Ello permite hablar de una resignificación del conocimiento matemático (periodicidad) en un contexto argumentativo (interpretación situacional de la práctica predicción). Nuestra propuesta es que lo periódico permitirá percibir articulaciones al seno del saber matemático.
Resumo:
Lo social en la didáctica de la matemática ha logrado datos relevantes sobre la construcción del saber matemático y su ingreso al sistema didáctico. Con ello, se han marcado directrices para entender la complejidad del conocimiento matemático escolar y la articulación con las actividades y prácticas del humano para conocer. Se ha entendido lo que el humano organiza está fuera de la estructura matemática pero es fundamental para que ésta se desarrolle, de ahí la importancia del papel que debe desempeñar la reconstrucción de significados y de argumentos en el sistema didáctico.