38 resultados para LÍMITES

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nivel educativo la noción de derivada se enseña en los cursos regulares de cálculo, pero por lo general, siempre en la forma en que fue definida por Cauchy, lo que implica un procedimiento se hace necesario hacer una factorización. Constantin Caratheodory establece una definición diferente. Esta definición presenta tres aspectos didácticos destacados: Nos muestra que el proceso de acercamiento de las pendientes de las secantes a la pendiente de la tangente es continuo y por tanto, la continuidad es esencial para la derivabilidad, la segunda parte se refiere a la facilidad de la derivación como un proceso de factorización repetitivo y no como cálculo de límites, así como simplicidad en la demostración de teoremas de linealidad, regla de la cadena, algebra de derivadas (suma, producto y cociente), aplicado a funciones polinómicas de valor real y la tercera es que a nivel escolar se generan alternativas en la enseñanza del cálculo a través de la implementación de conceptos nuevos, con el fin de evitar procedimientos tediosos que se tienen con las definiciones tradicionales como la de Cauchy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo es una unidad didáctica para el tema matemático de límite y continuidad. Para ello se utiliza el análisis didáctico como herramienta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uno de los objetos matemáticos que los alumnos manipulan algebraicamente, sin saber su significado, es el concepto del límite matemático. Ejemplo de tal situación son los estándares de evaluación de algunos libros sobre el tema: “aplico las propiedades para hallar límites de funciones sencillas”, “calculo límites infinitos o al infinito de funciones racionales”, entre otros. La presente propuesta pretende que a partir de problemas el alumno construya el significado del límite y del infinito en matemáticas. La propuesta está basada en los sistemas de representación y el modelamiento funcional.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el presente trabajo nos interesa principalmente determinar qué concepciones sobre el infinito han desarrollado estudiantes de último año de secundaria y estudiantes universitarios de primer año. Aunque este concepto no aparece como un contenido específico del currículo de matemáticas, sobre él se desarrollan diferentes concepciones en escenarios no escolares que de una u otra manera afectan la construcción de conceptos matemáticos relacionados con él. Además, nos interesa confrontar las ideas que surgen cuando se habla de infinito en lo grande e infinito en lo pequeño, ya que aunque se trata de la construcción de un mismo concepto sus concepciones emergen de manera diferente en la mente de los individuos (Núñez, 1997). Lo que se puede justificar considerando que es más fácil comprender el infinito en lo grande como un proceso que continua sin parar y que no tiene fin, que el infinito en lo pequeño, en donde a pesar de conservarse el hecho de un proceso sin fin, aparece una nueva situación que sugiere que dicho proceso tiene un límite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se analiza una clase de matemáticas de primero de bachillerato, en cuanto al concepto de límite de una función, bajo el marco teórico del enfoque ontosemiótico de la cognición matemática (Godino, 2002; Godino, Contreras y Font, 2006), utilizando las herramientas de la trayectoria y configuración instruccional, así como las configuraciones de referencia correspondientes a un proceso de estudio. Se discuten los resultados que se obtienen, haciendo explícitos ciertos fenómenos didácticos relacionados con los conflictos semióticos, y se describen los procesos dialógicas presentes en el aula, mostrando la complejidad ontosemiótico de dicho proceso de estudio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se pone de manifiesto la presencia de los fenómenos de aproximación organizados por una definición de límite en el caso de las sucesiones de números reales y de las funciones reales de una variable real. La exposición incluye la caracterización de tales fenómenos, una descripción del análisis comparativo desarrollado en base a ellos entre dos definiciones formales de límite de sucesión y función y una síntesis del estudio llevado a cabo sobre una muestra intencional de libros de texto de matemáticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La enseñanza-aprendizaje de los conceptos elementales del Análisis matemático en el nivel del Bachillerato, constituye uno de los puntos de investigación en Didáctica de las Matemáticas más relevantes en la actualidad. Desde marcos teóricos diferentes como la ingeniería didáctica, teoría de obstáculos, la teoría antropológica o el APOS, se han realizado investigaciones sobre la enseñanza-aprendizaje del límite de una función en los niveles de enseñanza de Bachillerato y Universitaria. En este trabajo se presenta una propuesta de investigación, en la que se aplica la teoría de las cuestiones semióticas (TFS), mediante la cual se busca describir, explicar e identificar factores condicionantes de la enseñanza-aprendizaje del límite de una función en un contexto institucional fijado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La enseñanza del Análisis Matemático en 1o y 2o de Bachillerato y primer año de Universidad, presenta unos problemas, asociados a los fenómenos didácticos inherentes al estudio de las Matemáticas, que es necesario tipificar a partir de la modelización del conocimiento matemático y del proceso de enseñanza escolar. En este Proyecto se estudian los conceptos elementales del Análisis Matemático –límite, continuidad, derivada e integral desde la perspectiva de los obstáculos epistemológicos y de los actos de comprensión (Sierpinska, 1997), en cuanto al saber escolar (detectado en los manuales), el saber enseñado (que figura en los apuntes de los profesores) y el saber del alumno (identificado por medio de sus respuestas a un cuestionario) tratando de extraer datos que faciliten el uso de estrategias de enseñanza-aprendizaje de estas nociones en situaciones de enseñanza adecuadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudiamos, desde perspectivas simbólica y fenomenológica, diferencias y analogías existentes entre dos definiciones: la de límite finito de una sucesión y la de sucesión de Cauchy. Las diferencias entre una y otra definición parecen acentuarse en el aspecto fenomenológico, ya que observamos fenómenos distintos en cada una de ellas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se muestran los resultados de una encuesta sobre las opiniones del profesorado de Matemáticas de secundaria en Galicia, relativa a la instrucción sobre el concepto de "Límite funcional" En esta comunicación se presentan sólo tres aspectos relacionados con el tema de una investigación más amplia: El profesorado opina sobre el nivel adecuado en que considera se debería impartir la noción de límite de funciones en los itinerarios del Bachillerato o en la ESO; se identifican algunos referentes que utiliza en su introducción, y finalmente, se recuentan instrumentos, técnicas y herramientas que el profesorado utiliza habitualmente en la instrucción de este objeto matemático. Transversalmente se trata de ver en qué grado el contexto general del aula condiciona las estrategias, herramientas y procedimientos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se explica un proyecto sencillo de innovación educativa para introducir de manera intuitiva la caracterización épsilon-delta de límite a estudiantes de bachillerato.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo resumimos un estudio empírico llevado a cabo con estudiantes de bachillerato con la intención de explorar y describir los distintos significados vinculados al concepto de límite que los estudiantes pueden poner de manifiesto al abordar tareas que involucran la relación entre varios sistemas de representación. Describimos algunos aspectos del lenguaje utilizado por los escolares en sus interpretaciones, profundizando en las concepciones intuitivas a las que dan lugar, seguido de la exploración del manejo de otros sistemas de representación por parte de los escolares como el simbólico a la hora de interpretar gráficas de funciones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El concepto de límite es importante en la educación media, dado que es relevante para introducir otros conceptos como continuidad, derivada, integral, entre otras; de igual manera, sabemos desde diversos autores y desde nuestra experiencia con el aprendizaje de límites, que su enseñanza ha sido algorítmica y tradicional, por lo tanto, se hace necesario replantear este tratamiento y proponer una forma dinámica, para que el estudiante pueda superar algunos de los obstáculos propuestos por Sierpinska (1987). Para esto, proponemos diseñar actividades que busca tratar y/o superar el obstáculo geométrico referido al concepto de límite, basado en un trabajo colaborativo que tendrá lugar en sesiones virtuales en horarios extraclase, que estarán apoyadas por sesiones presenciales (dentro del aula).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El concepto de límite es difícil de enseñar y aprender, dado que trae consigo diversos obstáculos que deben ser superados en su totalidad para aprender dicho concepto; por lo tanto crear actividades que permitan su comprensión contribuirá significativamente a facilitar este proceso (enseñanza- aprendizaje). De esta manera se proponen cuatro actividades que parten de la construcción del fractal “árbol pitagórico”; dicho fractal aporta al tratamiento del obstáculo geométrico del concepto de límite. Este obstáculo surge a través de la evolución del concepto de límite y es precisamente de la historia de donde surgen las actividades que se aplican a estudiantes de grado undécimo en entornos virtuales y presenciales, mediadas por el trabajo colaborativo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente reporte articula el modelo educativo de van Hiele en su aspecto prescriptivo con la enseñanza de uno de los conceptos fundamentales del Análisis Matemático, continuidad local, a través de la implementación y el desarrollo de un Módulo de Aprendizaje que permite procesos de razonamiento en los estudiantes con el fin de promoverlos de un Nivel II a un Nivel III, el módulo es construido en correspondencia con los descriptores de fases para de dar cuenta de las estructuras mentales elaboradas. Posteriormente, en el análisis de cada uno de los tres casos, se describe en categorías en correspondencia los descriptores y donde se hace explícito como razonan los estudiantes en su paso del Nivel II al Nivel III respecto al concepto de continuidad local.