4 resultados para Imágenes visuales
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
A partir de un estudio en proceso con profesores del nivel medio sobre errores en el uso de expresiones numéricas que contienen exponentes y radicales se propone una forma de enseñanza basada en recursos de visualización usados en la graficación de funciones. Además de reconocer la visualización como la habilidad de los sujetos para formar y manipular imágenes mentales se acepta como la habilidad para trazar diagramas apropiados para representar un concepto matemático o un problema. Son reconocidos el valor y la importancia de las imágenes visuales, en los diagramas y de otras herramientas visuales en los procesos heurísticos, para el descubrimiento, en la enseñanza de la matemática. Se propone una forma integral de abordar el aprendizaje de exponentes y radicales que consideran recursos visuales, numéricos y algebraicos para obtener sus propiedades. La graficación de funciones que comprenden formas de expresiones con exponentes y radicales, realizada por puntos, por intervalos y en forma global, favorece el análisis de la forma en que cambian las variables e ilustra el dominio de definición de las expresiones algebraicas. Del análisis de las representaciones gráficas se obtienen las propiedades de expresiones numéricas que incluyen exponentes y radicales definidas tanto en los números reales como en los complejos. Utilizando el álgebra de estas curvas se obtienen otras propiedades numéricas. Se hace uso de la calculadora graficadora y la computadora para obtener las gráficas de las funciones y para verificar las propiedades numéricas que se establecen.
Resumo:
Muchas veces obtenemos una visión de la realidad que no se corresponde con la realidad en sí misma, ya que la mente interrelaciona la percepción visual y las representaciones que guardamos en la memoria. Se muestra en esta web cómo las Matemáticas subyacen a estas ilusiones visuales.
Resumo:
La convincente fuerza de las imágenes y su belleza artesanal son habitual y lamentablemente desaprovechadas en las aulas. Las pruebas visuales no demuestran -eso dice el rigor puritano- pero asientan cimientos, aportan elegancia plástica y ayudan a la motivación. Desde primaria hasta la universidad, la enseñanza de las matemáticas está planificada bajo un obsesivo punto de vista que prima lo general sobre lo particular. Sin embargo, una didáctica humanista, que permita al alumnado construir y diseñar, sólo es posible desde un buen conocimiento de las propiedades individuales de los objetos matemáticos.
Resumo:
En un modelo cognitivo, la estructura cognitiva asociada con un determinado concepto matemático incluye todas las imágenes mentales, representaciones visuales, experiencias e impresiones, así como propiedades y procesos asociados (que llamaremos concepto-imagen, siguiendo a Vinner, Tall y Dreyfus y “estructuras elaboradas” o “esquemas” según los científicos cognitivos) y ha ido emergiendo con el tiempo mediante experiencias de todos los tipos, cambiando a medida que el individuo recibe nuevos estímulos y madura e influyéndose por desviaciones, aparentemente triviales, de un entendimiento válido. A medida que este concepto-imagen se desarrolla, no resulta necesario que sea coherente en cada momento. Así, resulta posible que visiones conflictivas sean evocadas en tiempos diferentes, sin que el individuo sea consciente del conflicto, hasta que son evocadas simultáneamente. Su coincidencia o no con lo que podríamos llamar concepto-definición (la formulación convencional lingüística que demarca precisamente las fronteras de aplicación del concepto) es fuente de muchas disfunciones en el aprendizaje.