21 resultados para Grado de dificultad
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Los procedimientos, gráficos, operaciones y procesos en las matemáticas hacen necesaria la implementación de recursos didácticos que permitan facilitar el aprendizaje de los contenidos de ella. Por esto son indispensables en la enseñanza de las matemáticas como instrumentos de apoyo que favorecen el proceso de matematización y representación de ideas matemáticas. Esto es una gran dificultad para el niño con discapacidad visual ya que en la educación matemática hacen falta materiales didácticos adaptados lo cuales mejoren el ritmo de trabajo y rendimiento a la hora de aprender haciendo uso de una Didáctica Especial de la Matemática para ciegos que permita una adecuación de materiales pedagógicos e instrumental de trabajo para esta población.
Resumo:
Se presenta un avance de investigación en el cual se aborda el estudio de algunas relaciones lineales a través de procesos de modelación matemática.
Resumo:
Se presenta un ejemplo de análisis didáctico del tópico "Ecuaciones de primer grado y sistemas de ecuaciones"
Resumo:
La utilización de recursos visuales y manipulativos potencializan nuestra capacidad para resolver problemas mediante ecuaciones de primer grado con una incógnita.
Resumo:
El concepto de límite es importante en la educación media, dado que es relevante para introducir otros conceptos como continuidad, derivada, integral, entre otras; de igual manera, sabemos desde diversos autores y desde nuestra experiencia con el aprendizaje de límites, que su enseñanza ha sido algorítmica y tradicional, por lo tanto, se hace necesario replantear este tratamiento y proponer una forma dinámica, para que el estudiante pueda superar algunos de los obstáculos propuestos por Sierpinska (1987). Para esto, proponemos diseñar actividades que busca tratar y/o superar el obstáculo geométrico referido al concepto de límite, basado en un trabajo colaborativo que tendrá lugar en sesiones virtuales en horarios extraclase, que estarán apoyadas por sesiones presenciales (dentro del aula).
Resumo:
Se presenta un avance de una investigación de tipo cualitativo en la cual se busca identificar las características de razonamiento presentadas en estudiantes de grado quinto al momento de enfrentarse a situaciones de tipo variacional; dichas características se discuten a la luz del marco conceptual para la covariación propuesto por Carlson, Jacobs, Coe, Larsen, y Hsu (2003). Desde las situaciones, se desprenden algunas implicaciones y recomendaciones para su implementación en el aula de clase, específicamente para un acercamiento a nociones como: función y tasa de variación, las cuales se encuentran en las bases propias del razonamiento covariacional y pueden abordarse desde los primeros grados de escolaridad como una manera de crear cimientos en la comprensión de los conceptos más relevantes del cálculo.
Resumo:
Diversas investigaciones han mostrado la dificultad que existe en el proceso de enseñanza aprendizaje del concepto de límite; más aún cuando este presenta diversos obstáculos (geométrico, horror al infinito, relativo a funciones y ligado al símbolo)que deben ser superados en su totalidad para aprender dicho concepto. De esta manera, el presente trabajo pretende mostrar cómo desde un contexto geométrico se hace uso de los fractales, específicamente del fractal “árbol pitagórico”, el cual se propone durante tres sesiones de clase en estudiantes de grado undécimo para ir construyendo la noción de límite. En este sentido, se busca promover un aprendizaje más dinámico y autónomo, donde el estudiante tenga un contacto directo con la construcción de dicho concepto.
Resumo:
En la presente experiencia de aula se mostrarán los aspectos que hicieron necesario trabajar con los estudiantes de grado undécimo las cónicas, en especial, la circunferencia, desde lo planteado por el Ministerio de Educación Nacional en los Estándares de Calidad y en los Lineamientos Curriculares, para luego ver la necesidad del uso del geoplano como recurso didáctico para la construcción del objeto matemático, partiendo de las dificultades que presentan los estudiantes en la construcción e identificación de las propiedades de las cónicas, especialmente de la circunferencia. Seguidamente, se expone la descripción general de la experiencia, los logros y dificultades que surgieron en el proceso de enseñanza y se finaliza con la reflexión que generó este proceso de enseñanza-aprendizaje.
Resumo:
El informe que se presenta es el resultado de nuestro trabajo de investigación para optar el título de Licenciadas en educación básica con énfasis en matemáticas. Se diseñó e implementó una secuencia de actividades sobre la enseñanza de la noción de Probabilidad marginal y conjunta a 72 estudiantes de Grado Undécimo del Instituto Técnico Industrial Francisco José de Caldas, teniendo como referente la resolución de problemas y la teoría de las situaciones didácticas propuestas por Brousseau.
Resumo:
Este documento presenta un juego o puzzle de intercambio de posiciones es aquel en el que, sobre un tablero, se encuentran posicionados dos grupos de fichas y se presenta como objetivo cambiar entre sí dichas posiciones. El cambio se ha de hacer con ciertas reglas que atañen al modo de moverse las fichas, con el fin de utilizar como recurso didáctico.
Resumo:
En el anterior artículo prometimos una segunda parte dedicada al tratamiento del juego “Salto de la Rana” en la clase. Nos toca, pues, hablar de estrategias, notaciones, desarrollos, soluciones y ampliaciones o variantes del mismo. Empezaremos por indicar algunas referencias bibliográficas más, todas ellas interesantes, y de las que hemos sacado la mayor parte de la información que hemos reunido en este artículo. Recomendamos que sean leídos, al menos aquellos más asequibles y de manera particular los de Fayos y Gracia, Corbalán, Shell Center, Cobo y Ferrero.
Resumo:
publicamos un artículo con el título "El solitario: un juego con mucho juego", donde abordábamos este juego con una cierta generalidad. Hacíamos una descripción del juego e informábamos de su historia, las variantes posibles y una pequeña investigación en el aula sobre sus posibilidades didácticas, así como una mínima, pero suficiente, bibliografía sobre el mismo. Está disponible en el hipervínculo anterior y una reedición de dicho artículo es posible que figure en un futuro próximo en la sección “Almacén de recursos” de esta revista digital.
Resumo:
En este estudio participaron profesores de matemáticas y estudiantes de tercer grado de bachillerato, a los cuales se les aplicó una prueba de matemáticas, con tres propósitos: primero conocer sus fortalezas y debilidades ante una prueba objetiva y estandarizada de matemáticas; segundo, determinar cursos de actualización para los docentes que conviertan sus debilidades en fortalezas; y tercero, que los profesores conozcan las debilidades de los estudiantes y apliquen las estrategias pertinentes para potenciar su aprendizaje. De los datos obtenidos, se detectaron los reactivos de mayor dificultad, en el caso de los docentes, los reactivos con un porcentaje menor o igual al 90% de respuestas correctas; y en el caso de los estudiantes, los de un porcentaje de respuestas correctas menor o igual al 60%. Los resultados señalan que las debilidades de los docentes, son las debilidades de los estudiantes.
Resumo:
La presente investigación, de orden cualitativo y en curso, es parte de una tesis de maestría en México respaldada por el CONACYT. El interés es identificar las dificultades de estudiantes del segundo ciclo de primaria (8-9 años) al resolver problemas multiplicativos según la estructura del “Isomorfismo de Medidas” propuesta por Vergnaud (1995). La propuesta teórica se basa en el “Modelo Teórico Local” (Filloy, 1999). En su primera fase, se realiza la revisión de la propuesta institucional (Secretaria de Educación Pública, [SEP] 1993), bibliografía complementaria respecto a la enseñanza de problemas multiplicativos, y el diseño de pruebas y ejercicios de diagnóstico; en la segunda fase se diseñara y aplicará el modelo de enseñanza centrando el interés en la resolución de problemas con isomorfismo de medidas. Como resultados preliminares, se tiene que los niños muestran modos de resolución de problemas deficientes, debido a que en la propuesta oficial no se tratan problemas relacionados con el “Isomorfismo de medidas”. Los niños presentan dificultades al resolver problemas de la vi
Resumo:
La presente investigación, de orden cualitativo y en curso, forma parte de una tesis de maestría en México respaldada por el CONACYT. El interés es identificar las dificultades de estudiantes del segundo ciclo de primaria (8-9 años) al resolver problemas multiplicativos según la estructura propuesta por Vergnaud (1995) en el “Isomorfismo de Medidas”. La propuesta teórica es basada en el “Modelo Teórico Local” (Filloy, 1999). En su primera fase, de dos, se realiza la revisión de la propuesta institucional (Secretaria de Educación Pública, [SEP] 1993), bibliografía complementaria respecto a la enseñanza de problemas multiplicativos, y el diseño de pruebas y ejercicios de diagnóstico. Como resultados preliminares, se tiene que los niños muestran modos de resolución de problemas deficientes, debido a que en la propuesta oficial no se tratan problemas relacionados con el “Isomorfismo de medidas”. Los niños presentan dificultades al resolver problemas de la vida cotidiana planteados en el aula.