15 resultados para Fernández Molina, Francisco
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Se trata de un libro escrito por un grupo de estudiantes del Doctorado de Didáctica de la Matemática de la Universidad de Granada, con intereses y procedencias muy diversas pero con un interés y preocupación común por la enseñanza de la geometría. En este libro nos centramos en el trabajo de la geometría plana a través del papel, un material cercano, versátil, de bajo coste, a la par que interesante. Proponemos una serie de tareas variadas con indicaciones para el profesor. También se incluyen las soluciones a las tareas planteadas y, por último, presentamos las tareas en forma de fichas para que el profesor pueda fotocopiarlas y llevarlas directamente al aula.
Resumo:
Se presenta un ejemplo de análisis didáctico del tópico "Ecuaciones de primer grado y sistemas de ecuaciones"
Resumo:
Analizamos el sentido estructural que estudiantes de entre 16 y18 años de edad ponen de manifiesto al trabajar con expresiones algebraicas, en el contexto de la simplificación de fracciones algebraicas que involucran las igualdades notables cuadrado de la suma, cuadrado de la diferencia, diferencia de cuadrados y propiedad distributiva/factor común. La identificación y clasificación de las estrategias empleadas por los estudiantes nos permite diferenciar tres modos de actuación que evidencian diferentes niveles de sentido estructural. Este análisis nos permite distinguir un amplio espectro de niveles de sentido estructural y avanzar en la comprensión del constructo sentido estructural que informa sobre las habilidades necesarias para hacer un uso eficiente de las técnicas algebraicas en tareas escolares.
Resumo:
En este trabajo resumimos un estudio empírico llevado a cabo con estudiantes de bachillerato con la intención de explorar y describir los distintos significados vinculados al concepto de límite que los estudiantes pueden poner de manifiesto al abordar tareas que involucran la relación entre varios sistemas de representación. Describimos algunos aspectos del lenguaje utilizado por los escolares en sus interpretaciones, profundizando en las concepciones intuitivas a las que dan lugar, seguido de la exploración del manejo de otros sistemas de representación por parte de los escolares como el simbólico a la hora de interpretar gráficas de funciones.
Resumo:
Los sistemas de representación y la resolución de problemas matemáticos es un tema de interés para la Didáctica de la Matemática porque se pone en juego una serie de conocimientos, conceptos, modelos, métodos, estrategias, experiencias y relaciones que implican un pensamiento elaborado complejo que consigue que, a partir de unos datos conocidos, encontrar otros datos desconocidos. En este estudio, describimos la actuación de resolutores cuando resuelven un problema matemático, de manera espontánea con lápiz y papel. Cuando algún estudiante resuelve un problema mediante lápiz y papel deja la huella de los pasos seguidos en su resolución. Esos pasos están cargados de información importante que el resolutor presenta haciendo uso de algún sistema de representación que le es conocido y le permite comunicar su pensamiento.
Resumo:
Presentamos resultados relativos a la equivalencia matemática y fenomenológica de la definición de límite finito de una sucesión y la definición de sucesión de Cauchy. Para ello enunciamos dos criterios que permiten determinar cuando dos fenómenos son equivalentes y cuando lo son dos definiciones, desde un punto de vista fenomenológico. A continuación y usando estos resultados realizamos avances significativos para demostrar en un futuro próximo que la definición de límite finito de una función en el infinito y la condición de Bolzano-Cauchy, además de ser equivalentes matemáticamente también lo son fenomenológicamente. Para ello enunciamos los fenómenos organizados por la definición de Bolzano-Cauchy que convenimos en llamarla definición de función de Cauchy.
Resumo:
Este artículo se enmarca en el proyecto de investigación “Creación de metodologías que permitan la integración de ciencias y matemáticas en el proceso de enseñanza y aprendizaje de la educación diversificada costarricense”, que fuera realizado por un equipo interdisciplinario conformado por profesionales en las áreas de matemática, física, química, biología y sociología. Junto a una breve contextualización teórica y metodológica, el presente artículo ofrece algunos ejemplos con prácticas y contenidos que faciliten a los estudiantes aplicar los conceptos de razones y proporciones en el análisis de casos vinculados a la vida cotidiana, y que a su vez permiten la integración con otras disciplinas.
Resumo:
Hemos dejado para el final aquella resolución por la que comienza la mayoría del profesorado de matemáticas: la basada en el uso del cálculo diferencial. Siempre que hemos propuesto el problema que planteábamos en la primera entrega en algún curso o seminario, la forma de abordarlo ha sido echando mano de las derivadas para la búsqueda de extremos de determinada función área. Como se habla de enmarcar un cuadro de 3 m de perímetro, siempre han comenzado pensando en formas rectangulares, por lo que el problema que se planteaban solía ser el siguiente: entre todos los rectángulos de igual perímetro P, el cuadrado de lado P/4 es el que encierra la mayor área.
Resumo:
A lo largo de la historia han existido una serie de problemas que han intrigado, a la vez, frustrado los matemáticos de todos los tiempos. Algunos de ellos siguen sin resolverse y otros como problemas isoperimétricos del que venimos preocupándonos desde el número 33 de suma tan sencillo de enunciar y sin embargo tan difícil de demostrar, se resolvieron tras siglos de esfuerzo. Cuando decimos anterior lo hacemos teniendo muy en cuenta lo que tal afirmación significa. Es decir, resolver un problema no consiste sólo en dar una solución sino demostrar que tal solución existe. De esta cuestión nos ocupamos ahora.
Resumo:
¿cuál es el camino más corto entre dos puntos del plano? ¿Y del espacio? ¿Y sobre una superficie cualquiera? ¿Qué forma tiene el tobogán más rápido? ¿Cuál es la curva plana que encierra mayor área entre todas las que tienen una misma longitud?
Resumo:
Demos un gran salto en el tiempo. En números anteriores narramos los avatares del problema isoperimétrico en Grecia y en los países islámicos medievales, respectivamente. Retomemos el enfoque dado por Pappus con el que llegó a la conclusión de que, para un área dada, el perímetro del hexágono regular es menor que el del cuadrado o el del triángulo equilátero, por lo que si el problema se plantea sobre una teselación regular del plano, un trozo finito del teselado regular hecho con hexágonos regulares es el que requiere menor perímetro. Bueno, aún no podemos detenernos porque hemos de hacer la demostración de la proposición de Pappus en 3D. El conocido MacLaurin (1698-1746), profesor de Aberdeen y Edimburgo, utilizó el método que a continuación presentamos. Lo hizo para poner de manifiesto la capacidad de la Geometría clásica como fuente de investigación en cualquier momento (conviene recordar que MacLaurin estaba centrado en analizar las posibilidades de los métodos infinitesimales que en su época emergían, lo que demostró sobradamente con su Treatise of Fluxions).
Resumo:
En la entrega del N° 35 nos preguntábamos si la evolución histórica del problema nos podría servir de guía para planificar una actuación en clase, siguiendo el modelo Van Hiele. ¿Cómo describir este modelo en pocas líneas?
Resumo:
Ser demostrado, no solamente por Aristóteles, sino por Arquímedes y Zenodoro, que entre las figuras isoperimetricas, la mayor es entre las planas el círculo, y entre los sólidos la esfera.
Resumo:
Siempre me ha interesado la historia de las matemáticas cuando la resolución de problemas ha sido su columna vertebral. Ahora que estamos en el 2000, tenemos muy presente aquella famosa lista de 23 problemas dados por Hilbert hace 100 años.
Resumo:
El Tratado de Estadística de Olegario Fernández Baños fue el primer libro de Estadística Matemática en sentido moderno que se publicó en España. Anteriormente, se habían publicado libros de estadística para la asignatura de geógrafa y estadística industrial y Mercantil de las Escuelas de Comercio y para la de Economía Política de las Facultades de Derecho. tos libros de texto para esas asignaturas trataban, generalmente, temas de carácter administrativa, descripción de los métodos estadísticos utilizados y aplicación de la Estadística a España.