13 resultados para Evaluación orientada al aprendizaje
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La evaluación ha tomado un destacado lugar. Es una actividad prioritaria en las aulas, que causa impacto, y cuyos resultados en buena medida representan un reto para los profesores. En esta investigación pudimos constatar que al menos en lo explícito del discurso, los diseños didácticos para la enseñanza de las Matemáticas que se centran en el alumno van mejorando lentamente, pero cuando se concretan los procesos de evaluación surge una contradicción, pues el enfoque no ha sido realmente modificado, pues los aprendizajes de los estudiantes se proyectan de manera limitada pues para evaluarlos se construyen formatos tradicionales, con estructura simple que demanda respuestas directas, cortas y sin mucho trabajo de reflexión por parte del alumno. Hace falta más fundamentación en los apoyos didácticos que los profesores reciben, y el renglón de la evaluación de los aprendizajes matemáticos en el aula queda como una verdadera asignatura pendiente en la formación magisterial.
Resumo:
Dentro de la concepción sistémica de la enseñanza la evaluación cumple una función insustituible de control, análisis y valoración de la calidad de los procesos. En este trabajo se realiza una valoración de la evaluación de los estudiantes (evaluación del aprendizaje), basado en las experiencias personales de los miembros del colectivo y teniendo en cuenta que la evaluación es algo más que un examen y comprobación del rendimiento académico, es parte de dicho proceso de enseñanza-aprendizaje. Con el objetivo de contextualizar las reflexiones sobre la evaluación del aprendizaje y teniendo en cuenta que el proceso de enseñanza-aprendizaje es un sistema donde se encuentra el profesor, el alumno y los contenidos, unidos sobre la base de los objetivos, es que se propone una guía para dicho análisis que constará de cuatro aspectos: trayectoria y actividad profesional, planificación y organización de la docencia, evaluación y características del modelo de evaluación.
Resumo:
En Colombia existen pocos estudios relativos al objeto de esta investigación, los que hay son referidos a la básica primaria y preescolar. El tercer estudio internacional de matemáticas y ciencias TIMSS, es la continuación de una serie de estudios en educación matemática para establecer el alcance de los logros educativos en estas áreas. Por otro lado, la Agenda Internacional de Educación Matemática ha recomendado investigar algunos tópicos asociados a estos logros; el tema de esta investigación es uno de ellos. En este caso se ha indagado sobre muchos aspectos que rodean la formulación de logros hasta la evaluación de los mismos, por que estos direccionan el aprendizaje del conocimiento matemático escolar. De ahí que se deban tener en cuenta ciertos elementos teóricos y prácticos planteados en la legislación vigente para el sistema educativo y los procesos de desarrollo y pensamiento entre otros. El trabajo parte de una teorización de la evaluación como referente para analizar la información obtenida de una muestra aleatoria tomada de 15 colegios del Departamento del Cesar donde se entrevistó también aleatoriamente a 60 profesores y 552 estudiantes entre 7° y 11° grados. Los resultados muestran una categorización de los elementos que participan en este proceso como son: los fundamentos para plantear o establecer los logros del aprendizaje, los mecanismos para evaluar, la valoración por períodos, niveles de importancia de algunos factores cuando se evalúa, aspectos que determinan la evaluación, dificultades para valorar los logros, criterios para la evaluación, tipos de evaluación aplicadas por los profesores, objeto de la evaluación y otros. Como conclusión del análisis de esta información, se desprenden una serie de recomendaciones de cómo valorar los logros del aprendizaje matemático para contribuir al mejoramiento de las prácticas evaluativas y la formulación de logros por parte de los profesores de matemáticas.
Resumo:
Se reporta parte de un estudio acerca de evaluación de los aprendizaje en el área de matemática, en el cual se plantearon, entre otros, los siguientes objetivos: (a) describir e interpretar el proceso de construcción de portafolios elaborados por estudiantes de Ing. Industrial de la U.N.E.G. como parte de su práctica evaluativa y (b) orientar el proceso de elaboración, manejo y uso del portafolios en el aula, para ser utilizados como formas escritas de evaluación del aprendizaje matemático. El fundamento teórico es: (a) la concepción de evaluación de Díaz y Hernández (1998) y Salcedo ([995); (b) una visión de la teoría del desarrollo cognitivo de Piaget según González (1994); (c) la teoría constructivista del aprendizaje significativo de Ausubel (1980) y (d) una adaptación de los elementos: estructura de 1a actividad y segmentos de actividad de Stodolsky (|99|). La metodología de investigación utilizada se inscribe en el paradigma fenomenológico y cualitativo (Pérez Serrano, 1994), con un diseño etnográfico (Martinez, 1994) para la descripción detallada de los hechos y su interpretación. Las conclusiones más sobresalientes se refieren a que la construcción de portafolios permite ver la evaluación como parte de un proceso y no de forma aislada; en particular, permite reconocer en los estudiantes, procesos de pensamiento más profundos, relacionados con el conocimiento matemático procedimental y con el desarrollo de su poder matemático.
Resumo:
En este trabajo precisamos el significado de los términos capacidad y competencia en el marco de un programa de formación inicial de profesores de matemáticas de secundaria. Describimos brevemente las bases de ese programa y, a continuación, presentamos y ejemplificamos un procedimiento mediante el cual los futuros profesores reflexionan en torno al aprendizaje de los escolares y usan esas nociones cuando abordan la planificación de una unidad didáctica.
Resumo:
Este artículo es respuesta a la pregunta formulada por Jeremy Kilpatrick, "¿Qué dicen la investigación y la teoría acerca de la enseñanza y el aprendizaje de las matemáticas que se plasman en los documentos de los Estándares [del NCTM] y en varias de las críticas hechas a ellos?" (Kilpatrick, 1997). Me centro aquí en aquellas necesidades de los alumnos, que según las teorías disponibles, son la fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. En este artículo se identifican diez de tales necesidades. Mi análisis se basa en el supuesto de que todas ellas son universales aunque se puedan expresar de modos diferentes en diferentes individuos y en diferentes edades. Para cada una de las diez necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto? A lo largo del artículo, señalo ciertos dilemas inherentes al proyecto de enseñar matemáticas y sostengo que aunque algunos de los problemas no parezcan solubles, quizás su impacto se pueda reducir considerablemente con sólo mantenernos conscientes de su existencia. Este artículo se ha dividido en dos partes para su presentación en la Revista. Aquí se incluye lo referente a las cinco primeras necesidades identificadas; en el siguiente número se expondrá lo relativo a las otras necesidades.
Resumo:
Las observaciones en el aula de clase y el trabajo con los estudiantes del grado décimo de la Institución Educativa Normal Superior de Medellín mostraron que existían dificultades en el nivel de los procesos de pensamiento que se utilizaban al resolver los problemas matemáticos o querer aprender un concepto, estas dificultades consistían en la no aplicación del proceso necesario para resolver la tarea planteada fuera ésta el comprender, el realizar, explicar o verificar. Estas observaciones mostraron además que los procesos que manejaban los estudiantes no estaban acordes con los niveles que las teorías cognitivas plantean para su edad, el pensamiento formal propio de esta época aun no emergía y cada problema en el aula era resuelto solamente desde el punto de vista concreto. Teniendo en cuenta esto se concluyó que era necesario mejorar el proceso de razonamiento matemático, es decir llevar al estudiante a que aplique los procesos mentales necesarios para llegar al aprendizaje del concepto, la resolución de problemas y siga avanzando hasta llegar a la argumentación, pero en medio del trabajo cotidiano en el aula, esto es elevar los niveles de razonamiento de los estudiantes y con ello equilibrar el desarrollo de su pensamiento a su edad.
Resumo:
Esta es la segunda parte del artículo1 cuya presentación se inició en el número anterior de esta revista (pp. 95-140). Se incluye aquí lo referente a otras cinco necesidades de los alumnos, que según las teorías disponibles, son una fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. Para cada una de tales necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto?.
Resumo:
El SND ha sido considerado un aspecto básico dentro del currículo de matemáticas, debido a su funcionalidad en los procesos de escritura de cantidades y en el desarrollo de algoritmos de operaciones básicas. Acorde a ello, la escuela dedica gran cantidad de tiempo al proceso de escritura y reconocimiento de cantidades, a la comparación de cantidades y al reconocimiento del valor posicional de una cifra, pero aun así los estudiantes no logran comprender los principios báscos del sistema. La presente propuesta se basa en la sistematización de una secuencia de actividades de aula orientada al reconocimiento de los principios que estructuran y dan sentido al S.N.D. como es el proceso de equivalencias entre las unidades del sistema y el reconocimiento del valor de posición de una cifra dada. Para llevar a cabo el proceso de sistematización de experiencias, se retomaron los principios metodológicos de la investigación acción educativa. Estas orientaciones permiten una búsqueda continua de alternativas de trabajo, y a la vez integran la exploración reflexiva que el docente hace de su práctica incidiendo en la lanificación y el mejoramiento de la misma, lo cual constituye un elemento esencial para la formación investigativa de los futuros docentes de matemáticas
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
Para la Educación Matemática, el uso de la tecnología computacional hoy, reviste particular interés investigativo en lo que respecta al aprendizaje de las matemáticas de nuestros niños y niñas en las instituciones escolares; dado que, la tecnología computacional posibilita el estudio (tratamiento) de los objetos matemáticos y sistemas de representación y las representaciones semióticas que constituyen un elemento básico para entender la construcción del conocimiento de los estudiantes (Lupiañez, Moreno,1999) y desde las actividades cognitivas de representación inherentes a la semiosis: formación, tratamiento y conversión, de registros semióticos (Duval,1999).
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
En este capítulo,describimos nuestras actuaciones para el diseño e implementación de la unidad didáctica relacionada con el cálculo de áreas de polígonos por el método de descomposición y recomposición. Inicialmente, efectuamos la formulación del problema, al enfocarlo desde la normativa curricular colombiana, y describimos el proceso de selección del tema y los contextos social, institucional y académico del colegio donde se implementó. Después, explicamos el proceso del diseño basado en el análisis didáctico realizado sobre el tema. Seguidamente, describimos los instrumentos y procedimientos de recolección y análisis de la información. Posteriormente, describimos el diseño que se implementó, detallamos la evaluación realizada al diseño y a la implementación, y mostramos una propuesta de mejora para una futura aplicación. Por último, presentamos conclusiones de aspectos relevantes en el diseño e implementación de la unidad didáctica y listamos las referencias y anexos.