15 resultados para Estándares Médicos
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Uno de los objetos matemáticos que los alumnos manipulan algebraicamente, sin saber su significado, es el concepto del límite matemático. Ejemplo de tal situación son los estándares de evaluación de algunos libros sobre el tema: “aplico las propiedades para hallar límites de funciones sencillas”, “calculo límites infinitos o al infinito de funciones racionales”, entre otros. La presente propuesta pretende que a partir de problemas el alumno construya el significado del límite y del infinito en matemáticas. La propuesta está basada en los sistemas de representación y el modelamiento funcional.
Resumo:
Este artículo es respuesta a la pregunta formulada por Jeremy Kilpatrick, "¿Qué dicen la investigación y la teoría acerca de la enseñanza y el aprendizaje de las matemáticas que se plasman en los documentos de los Estándares [del NCTM] y en varias de las críticas hechas a ellos?" (Kilpatrick, 1997). Me centro aquí en aquellas necesidades de los alumnos, que según las teorías disponibles, son la fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. En este artículo se identifican diez de tales necesidades. Mi análisis se basa en el supuesto de que todas ellas son universales aunque se puedan expresar de modos diferentes en diferentes individuos y en diferentes edades. Para cada una de las diez necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto? A lo largo del artículo, señalo ciertos dilemas inherentes al proyecto de enseñar matemáticas y sostengo que aunque algunos de los problemas no parezcan solubles, quizás su impacto se pueda reducir considerablemente con sólo mantenernos conscientes de su existencia. Este artículo se ha dividido en dos partes para su presentación en la Revista. Aquí se incluye lo referente a las cinco primeras necesidades identificadas; en el siguiente número se expondrá lo relativo a las otras necesidades.
Resumo:
Esta es la segunda parte del artículo1 cuya presentación se inició en el número anterior de esta revista (pp. 95-140). Se incluye aquí lo referente a otras cinco necesidades de los alumnos, que según las teorías disponibles, son una fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. Para cada una de tales necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto?.
Resumo:
En este momento la educación matemática en el país se encuentra cruzando por un período crítico caracterizado por transformaciones fruto de la implementación de las políticas del Ministerio de Educación Nacional. Una de ellas, relacionada con los estándares básicos de matemáticas, son punto neurálgico para el sistema educativo en general. Su implementación en las instituciones educativas del país deberá generar espacios de reflexión, debate, análisis, confrontación, etc., a partir de los cuales se introduzcan formas nuevas de comprender, implementar, evaluar y transformar el currículo de matemáticas de nuestro país.
Resumo:
Los Estándares Básicos de Calidad del área de matemáticas, propuestos y publicados por el MEN en el primer semestre de este año, reflejan el enfoquen de los Lineamientos Curriculares (MEN,1998) en el sentido de organizar el currículo relacionando: procesos generales (razonamiento, resolución de problemas y comunicación), conocimientos básicos (orientación conceptual que debe tener el currículo, que parte de reconocer no sólo las relaciones entre conceptos asociados a un mismo pensamiento, sino las relaciones con conceptos de otros pensamientos). En el documento de estándares de calidad no se proponen pues estos elementos aislados sino que se retoma la idea de los lineamientos de considerar como un eje los procesos cognitivos de los estudiantes cuando se enfrentan en su actividad matemática a la construcción y uso no sólo de tópicos matemáticos específicos sino de los sistemas simbólicos y de representación característicos del conocimiento matemático.
Resumo:
Este estándar recomienda que los estudiantes formulen preguntas que puedan ser resueltas usando la recolección de datos y su interpretación. Los estudiantes podrán aprender a coleccionar datos, organizar sus propios datos o los de los demás, y disponerlos en gráficas y diagramas que sean útiles para responder preguntas. Los conceptos básicos de probabilidad se pueden manejar de mano de los conceptos estadísticos.
Resumo:
Se presenta una propuesta desarrollada en el Departamento del Magdalena, Distrito Cultural e Histórico de Santa Marta. A finales del año 2002 se hizo un análisis de los bajos resultados presentados por los estudiantes de grado Once en las diferentes pruebas aplicadas por el ICFES, específicamente en el área de Matemática durante los años 2001 y 2002. A partir de estos resultados se organizó un equipo de trabajo donde se asumió que la evaluación es un proceso continuo e integral en la enseñanza de la matemática que no solo basta dar información a diario, sino conocer realmente si los estudiantes están aprendiendo, si verdaderamente los alumnos son competentes a la hora de evaluarlos y además si se cumplen los estándares mínimos exigidos por MEN. Para lograr tal fin se diseño un plan estratégico a mediano plazo que ayuda a fortalecer los niveles de desempeño en el desarrollo de sus competencias tanto integrales ((interpretativa, argumentativa, propositiva) como básicas (la comunicación, el razonamiento y la solución de problemas), obteniéndose a partir del año 2006 resultados satisfactorios en el área.
Resumo:
En este capítulo presentamos el diseño e implementación de la unidad didáctica del tema ecuaciones lineales de primer grado con una incógnita. En su diseño tuvimos en cuenta los lineamientos y estándares curriculares establecidos por el Ministerio de Educación Nacional (MEN) (2006) y el Decreto 1290 de 2010. El diseño de la unidad didáctica comienza con la prueba inicial diagnóstica. Esta prueba nos permite evidenciar los conocimientos previos de los estudiantes para abordar el tema. Así mismo, planteamos unos objetivos secuenciales con tareas específicas que los caracterizan y contribuyen a su alcance. Esas tareas se desarrollan en diez sesiones de clase. Durante la realización de las tareas propusimos ejercicios no rutinarios y de mecanización. Estas tareas fueron apoyadas con el uso de algunos recursos y materiales didácticos y con diferentes formas de agrupación de los escolares.
Resumo:
El presente documento corresponde al trabajo final de la concentración en Educación Matemática de la Maestría en Educación de la Universidad de los Andes. El trabajo fue elaborado por cuatro profesores licenciados en matemáticas que ejercen en instituciones educativas públicas y privadas en la ciudad de Bogotá y en el departamento de Cundinamarca. Este informe describe el diseño fundamentado y justificado, la implementación y el balance estratégico de la unidad didáctica titulada “Método gráfico para resolver sistemas de ecuaciones lineales 2x2”. El diseño de la unidad didáctica surgió de la selección de un tema matemático que a su vez hace parte de los contenidos incluidos en el currículo oficial para los grados octavo y noveno de educación básica como lo establece el documento de Estándares Básicos de Competencias (Ministerio de Educación Nacional [MEN], 2006a). El diseño se fundamenta a partir del procedimiento de análisis didáctico que constituyó el contenido central de la maestría. Dicho procedimiento permitió concretar elementos previos a la aplicación y la descripción junto con el balance estratégico de la implementación de la unidad didáctica.
Resumo:
Este documento se elabora a partir de una revisión inicial de literatura donde se analizaron los Lineamientos Curriculares, los Estándares Básicos de Competencia y algunos estudios e investigaciones en el campo de la variación y la trigonometría. Desde los elementos teóricos observados en la literatura se hizo indispensable un análisis de algunos libros de texto frente al tipo de ejercicios que se proponía para abordar la trigonometría plana; de este análisis surgió la necesidad de diseñar propuestas alternativas en las cuales se haga hincapié en la visualización de relaciones funcionales entre los ángulos y los lados de un triángulo; de este modo, se espera aportar elementos para superar la idea de que las relaciones trigonométricas son “fórmulas” para calcular datos fijos y desconocidos de un triángulo.
Resumo:
Esta es una experiencia de aula llevada a cabo en el ciclo 2, la cual estuvo a cargo de dos profesoras practicantes quienes promovieron la estructura multiplicativa hasta identificar los múltiplos y divisores de un número, dicha experiencia se rigió desde lo metodológico por la estructura propuesta por el grupo DECA (); a nivel conceptual por varios autores como Verganud, Maza (1991),y otros; y finalmente el marco legal por los Estándares Básicos (2007) y los Lineamientos (1998. Se realizaron una serie de actividades que promovieron el reconocimiento y conceptualización de la división como reparticiones equitativas, y promovieron la reflexión tanto de los estudiantes como de las profesoras, en torno a la utilidad, facilidad y aceptación de las actividades para la comprensión de los estudiantes.
Resumo:
En la presente experiencia de aula se mostrarán los aspectos que hicieron necesario trabajar con los estudiantes de grado undécimo las cónicas, en especial, la circunferencia, desde lo planteado por el Ministerio de Educación Nacional en los Estándares de Calidad y en los Lineamientos Curriculares, para luego ver la necesidad del uso del geoplano como recurso didáctico para la construcción del objeto matemático, partiendo de las dificultades que presentan los estudiantes en la construcción e identificación de las propiedades de las cónicas, especialmente de la circunferencia. Seguidamente, se expone la descripción general de la experiencia, los logros y dificultades que surgieron en el proceso de enseñanza y se finaliza con la reflexión que generó este proceso de enseñanza-aprendizaje.
Resumo:
La teoría de la probabilidad es una rama importante dentro del desarrollo del pensamiento aleatorio, y en general, de la educación matemática, pues promueve el uso de heurísticas para realizar predicciones y tomar decisiones en torno a una situación del diario vivir. Si bien, en los lineamientos curriculares y en los estándares básicos de calidad se citan conceptos y temáticas en relación con la probabilidad que deben ser abordadas en las aulas de clase, las formas usuales de enseñanza ponen en evidencia el énfasis determinista que recae en la cultura escolar.
Resumo:
Este documento es una síntesis de una propuesta didáctica para modelar estadísticamente, errores de medición en las ciencias naturales. El origen de este trabajo fue motivado por cuatro cuestiones: la primera es la enseñanza del error como requisito para el currículo, los estándares curriculares establecen que un error es un punto en uno de los caminos hacia la verdad y, cada punto en ese camino, es un error de mayor o menor magnitud. Se vive en un mundo lleno de incertidumbres donde a nivel físico no existen verdades absolutas, por tanto, se vive con el error permanentemente, la segunda es la escasez de recursos didácticos para atender la enseñanza de error de medición en el aula teniendo en cuenta la revisión bibliográfica realizada, la tercera es el manejo interdisciplinar que se le puede dar al error de medición en el aula, y por último, es el uso de herramientas tecnológicas para el desarrollo de modelos o representaciones visuales acerca de éste tema en el aula, la importancia del error de medición en las ciencias y el tratamiento estadístico del error de medición en el aula, como instrumento para evaluar de forma cuantitativa la precisión y exactitud de los resultados obtenidos a partir de procesos experimentales.
Resumo:
Con base en un análisis de los lineamientos curriculares, los estándares básicos de competencia y algunos estudios e investigaciones sobre la variación asociada al estudio de la trigonometría plana, decidimos aplicar la técnica del análisis de contenido a algunos libros de texto del grado décimo frente al tipo de ejercicios y “problemas” que se proponen para abordar el estudio de las relaciones trigonométricas; este análisis muestra que generalmente esta temática se desarrolla a través de expresiones algebraicas para calcular datos fijos y desconocidos de un triángulo. Estos resultados muestran la necesidad de diseñar propuestas alternativas en las cuales se haga hincapié en la visualización de relaciones “dinámicas” y funcionales entre los ángulos y los lados de un triángulo.