14 resultados para Equivalente dinâmico
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este artículo se presentan dos problemas geométricos que involucran la noción de variación, analizados desde la perspectiva de la resolución de problemas y la incorporación del software dinámico como un medio que puede potenciar el aprendizaje de los estudiantes. Los objetivos al presentar un análisis desde diferentes procedimientos de solución a estos problemas son: exhibir distintos acercamientos a situaciones, los cuales puede ir desarrollando el estudiante y el grupo al abordarlas, proporcionar al profesor elementos que le permitan proponer trayectorias hipotéticas del aprendizaje vinculadas con los conceptos y habilidades matemáticas que se requieren para abordar el problema y para comprenderlo, así como proveer de elementos al docente para identificar los momentos en los cuales puede intervenir en el proceso de solución para encauzar o enfatizar conceptos o habilidades matemáticas.
Resumo:
La tecnología puede resultar un recurso didáctico para que los estudiantes examinen situaciones y problemas desde diversos ángulos, específicamente, el uso de software dinámico ofrece un medio útil para que ellos visualicen, exploren y construyan relaciones matemáticas. Estos apoyos modifican tan fuertemente el medio ambiente de trabajo que no basta con adaptar situaciones matemáticas clásicas, hay que concebir nuevas situaciones que tomen en consideración las potencialidades y las restricciones de la tecnología. Esto ha llevado a la creación de una génesis instrumental que estudia la construcción hecha por el estudiante cuando interactúa con un artefacto, convirtiéndolo en instrumento, a través de un proceso, de manera tal que se lo apropia y lo hace parte de su actividad matemática, actividad que en esta investigación está relacionada con el desarrollo del pensamiento covariacional.
Resumo:
La mayor parte de nosotros hacemos uso de los créditos que nos ofrecen las entidades financieras para la adquisición de distintos bienes, sobre todo la vivienda. En este artículo pretendemos mostrar las matemáticas que se encuentran debajo de estas operaciones financieras, evitando en lo posible el lenguaje financiero. También introducimos el concepto de la Tasa Anual Equivalente (TAE) que nos sirve para comparar los distintos créditos, así como un programa para DERIVE que nos permite calcularla en distintas situaciones.
Resumo:
Este artículo describe la investigación-acción que en 1994 realizaron los directivos-docentes del Colegio Distrital La Merced en el marco del Proyecto MEN-EMA. Indagar sobre el funcionamiento del área de matemáticas del colegio facilitó una mejor comprensión y un encuentro de mayor coherencia con la realidad que se vive en la institución en torno a la enseñanza y el aprendizaje de las matemáticas. Se hizo evidente la necesidad de recuperar y aprovechar al máximo los espacios destinados a la discusión, análisis y propuestas sobre el área para consolidar un proceso dinámico que favorezca el trabajo académico, el cambio de actitud y la actualización permanente con miras a incidir en el mejoramiento de la enseñanza y el aprendizaje de las matemáticas en el colegio. Los directivos-docentes descubrieron la importancia de participar -en cuanto líderes y facilitadores- en los procesos pedagógicos que se viven al interior del área.
Resumo:
Diversas investigaciones han mostrado la dificultad que existe en el proceso de enseñanza aprendizaje del concepto de límite; más aún cuando este presenta diversos obstáculos (geométrico, horror al infinito, relativo a funciones y ligado al símbolo)que deben ser superados en su totalidad para aprender dicho concepto. De esta manera, el presente trabajo pretende mostrar cómo desde un contexto geométrico se hace uso de los fractales, específicamente del fractal “árbol pitagórico”, el cual se propone durante tres sesiones de clase en estudiantes de grado undécimo para ir construyendo la noción de límite. En este sentido, se busca promover un aprendizaje más dinámico y autónomo, donde el estudiante tenga un contacto directo con la construcción de dicho concepto.
Resumo:
El presente documento tiene como finalidad el mostrar el proceso enseñanza- aprendizaje dado en el colegio I. T. I. Francisco José de Caldas en una práctica docente, abordando tres campos de pensamiento matemático: numérico, métrico y geométrico a partir de una situación fundamental explicitada en algunos juegos. Esta metodología se usa con el fin de hacer que los estudiantes obtengan un aprendizaje significativo de las temáticas propuestas, por medio de un proceso lúdico y dinámico; su objetivo es reflexionar acerca de los propósitos que tiene el maestro frente al proceso que enfrentan los estudiantes, sin pensar solamente en abordar muchos conocimientos para lograr todo lo propuesto por el currículo, sino que, independientemente de esto, se buscó que todo lo que se dio a conocer quedara completamente claro.
Resumo:
La cuadratura de una figura es la transformación de dicha figura en un cuadrado equivalente (de igual área). Cualquier figura se puede transformar en un rectángulo equivalente y todo rectángulo se puede transformar en un cuadrado equivalente.
Resumo:
Se analizan resultados de un estudio con alumnos de secundaria, en el que se utiliza un modelo virtual de la balanza para la enseñanza de la resolución de ecuaciones de primer grado. A diferencia del modelo concreto o diagramático, el modelo virtual es dinámico e interactivo y en su versión ampliada (balanza con poleas) incluye la representación y resolución de ecuaciones con sustracción de términos. Los resultados indican que al final del estudio, los alumnos logran extender el método algebraico de resolución a una variedad amplia de modalidades de ecuaciones y que de manera espontánea infieren el método de transposición de términos. Con el fin de investigar los procesos de producción de sentido y de construcción de significado, se adopta una perspectiva semiótica que incorpora al análisis las producciones sígnicas de los estudiantes, como parte de la interacción entre los sistemas de signos algebraico, aritmético y el sistema de signos del modelo.
Resumo:
El estudio tiene como propósito investigar los procesos de transferencia del aprendizaje situado de la sintaxis algebraica para la resolución de ecuaciones lineales, cuando se utiliza un modelo de enseñanza concreto, virtual y dinámico con estudiantes de nivel secundaria. Al final del estudio, los alumnos muestran un avance significativo en la resolución de ecuaciones y se puede decir que en su mayoría logran realizar la transferencia de las acciones efectuadas con el sistema de signos del modelo concreto (balanza virtual) a acciones que se ejecutan con el sistema de signos del álgebra. A su vez, se observó que los procesos de transferencia pasan por diferentes etapas, dependiendo del sistema de signos hacia el cual se logra la transferencia de acciones.
Resumo:
Los estudiantes de enseñanza media se enfrentan al uso e interpretación de los parámetros en funciones polinomiales, lugares geométricos y expresiones algebraicas en general. Este hecho conduce a la necesidad no sólo de diferenciar los parámetros de otro tipo de literales como variables o incógnitas, sino también dar un sentido de uso a los mismos con la finalidad de agrupar los objetos matemáticos en entidades más generales como son las familias de funciones. El presente taller tiene como objetivo mostrar la influencia que puede tener el uso de un recurso tecnológico dinámico en la comprensión de esta polisemia de las literales, así como en la optimización de la ideas como puede ser la generalización.
Resumo:
Se reporta aquí un minicurso en el que participaron profesores de matemática de Enseñanza Media. Trabajando en un ambiente de Geometría Dinámica se aborda la resolución de problemas que involucran distintas áreas de la matemática: geometría métrica, cálculo diferencial, geometría analítica, álgebra, y que permiten poner de manifiesto la pertinencia y relevancia –así como señalar sus peculiaridades- del ambiente dinámico en la construcción del conocimiento matemático por parte de los participantes y a su vez discutir su papel en el trabajo con estudiantes.
Resumo:
Este trabajo propone tres escenarios construidos en un software dinámico que buscan relacionar el cálculo diferencial y el integral a través de la construcción comprensiva del teorema fundamental del cálculo. Dichos escenarios fueron construidos tomando como base las cuatro fases que sustentan el uso de herramientas tecnológicas en la resolución de un problema propuestas por Santos y Moreno (2013). Se resalta el acercamiento visual y empírico a través de la construcción de la derivada como la pendiente de la recta tangente a una curva, la construcción de la integral definida como el área bajo la curva en un intervalo cerrado y cómo éstas se relacionan en el teorema fundamental del cálculo.
Resumo:
En este artículo se describe el proceso de instalación y utilización del paquete PythonTeX en la elaboración de un texto reproducible y dinámico. Se indican los requisitos tecnológicos y el protocolo de su operación a partir de ejemplos en que se realizan operaciones con matrices y se hacen cálculos elementales de estadística descriptiva.
Resumo:
Usando el método de variación de parámetros, construimos la solución particular de una ecuación diferencial de segundo orden. Luego demostramos que es una representación diferente pero equivalente a aquella solución construida por el método de reducción de orden.