7 resultados para Equivalencia
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Estudiamos, desde perspectivas simbólica y fenomenológica, diferencias y analogías existentes entre dos definiciones: la de límite finito de una sucesión y la de sucesión de Cauchy. Las diferencias entre una y otra definición parecen acentuarse en el aspecto fenomenológico, ya que observamos fenómenos distintos en cada una de ellas.
Resumo:
Presentamos resultados relativos a la equivalencia matemática y fenomenológica de la definición de límite finito de una sucesión y la definición de sucesión de Cauchy. Para ello enunciamos dos criterios que permiten determinar cuando dos fenómenos son equivalentes y cuando lo son dos definiciones, desde un punto de vista fenomenológico. A continuación y usando estos resultados realizamos avances significativos para demostrar en un futuro próximo que la definición de límite finito de una función en el infinito y la condición de Bolzano-Cauchy, además de ser equivalentes matemáticamente también lo son fenomenológicamente. Para ello enunciamos los fenómenos organizados por la definición de Bolzano-Cauchy que convenimos en llamarla definición de función de Cauchy.
Resumo:
Usando el método de variación de parámetros, construimos la solución particular de una ecuación diferencial de segundo orden. Luego demostramos que es una representación diferente pero equivalente a aquella solución construida por el método de reducción de orden.
Resumo:
Desde hace unos años, he detectado que los estudiantes presentan dificultades en las conversiones entre unidades de medida. La primera dificultad se presenta, en el hecho, de que ellos, cuando están frente a un problema de estos, un gran número no realizan los planteamientos pertinentes, pues el primer interrogante, es el tipo de operación que deben aplicar, sin hacer el análisis correspondiente; la segunda, es la memorización de una operación, puesto que en la mayoría de las situaciones aplican el método tradicional, multiplicar o dividir, de acuerdo al orden de la conversión y a la información que han recibido, y en ocasiones obtiene resultados erráticos, que el estudiante los percibe como correctos o coherentes; la tercera es la equivalencia entre las unidades de medida, más que todo entre los múltiplos y submúltiplos de las unidades básicas, aparentemente no parece un problema importante, pero en el momento de realizar la conversión, es donde se detecta la incidencia de este error; la cuarta, es la falta de comprensión de los resultados, es decir, para ellos en ocasiones es normal, que ciertas respuestas sean normales, sin tener en cuenta su coherencia, por ejemplo, determinar que 35cm sea igual a 35 metros, o 3500 metros, etc.; la quinta, es el olvido de las transformaciones entre unidades de medida de forma rápida, ya que, al cabo de cierto tiempo, cuando es tema es necesitado en una clase, el estudiante no lo recuerda con la solidez que el docente desea. Estos motivos nos impulsan a interrogarnos, ¿qué hacer, para tratar de superar estas dificultades en los estudiantes de secundaria y universitarios?
Resumo:
Através de la ventana la ciudad aparece conexa y cubriendo el mundo entero –Trude–, pero al salir a la calle veo rectángulos de cielo entre los edificios contiguos de cada manzana reticular –Zora–. El carácter conexo de la ciudad era sólo aparente, las casas y rascacielos no se adosan a sus vecinos, sino que mantienen una separación mínima que les permita vibrar sin peligro durante un seísmo. En el paseo me despisto. Pensaba haber salido ya de la ciudad, pero todavía estoy en ella –Zoe–. Supongo que atravieso limbos imperceptibles buscando un centro inexistente o ubicable en cualquier lugar –Pentesilea–. Desciendo las escaleras que conducen al metro y otra ciudad aparece bajo tierra –Argia–, más bulliciosa si cabe que la de arriba. El mapa de estaciones y recorridos reproduce en el plano un ovillo tridimensional –Zobeida– que recorren a diario millones de personas. Está salpicado de signos indescifrables que, en lugar de ayudarme, inducen a engaño –Ipazia–. Cuando vuelvo a emerger a la luz del día me encuentro un panorama similar. Inconscientemente elaboro relaciones de equivalencia –Zirma– para poder fijar imágenes, ideas y cosas en mi memoria.
Resumo:
Se repasa el planteo tradicional del criterio de la integral para la convergencia de series (con las hipótesis de que la función en cuestión sea continua, positiva y decreciente, y la conclusión de que la serie y la integral impropia convergen ambas o divergen ambas). Se muestran ejemplos en los que fallan una o más de las hipótesis y la conclusión del criterio falla. Se demuestra que son innecesarias las hipótesis de continuidad y positividad, y finalmente que basta con una condición aún más débil que la de que la función sea decreciente. Los resultados se aplican tanto a la equivalencia entre la convergencia de la serie y la convergencia de la integral impropia como a la fórmula para la cota del error en las sumas parciales cuando la serie converge.
Resumo:
El trabajo presenta los resultados de la aplicación de una estrategia constructiva para la introducción del tema de las ecuaciones, que toma en cuenta el paso de lo aritmético a lo algebraico y de lo concreto a lo representación en la resolución de las ecuaciones (tanteo sistemático, uso de la balanza, despeje en contexto abstracto, que se centra en la actividad y creatividad del alumno, y que considera el uso de diferentes sistemas de simbólico). El modelo se aplicó a una sección de 6° grado de Educación Básica, integrada por 25 alumnos de ll y 12 años, de una escuela pública de Barquisimeto (Venezuela). Se desarrolló a lo largo de seis sesiones de 90 minutos cada una. Los resultados evidencian que la estrategia implementada resultó exitosa; también resultó motivadora y promotora de la creatividad y la participación. En cuanto a los aprendizajes evidenciados durante la experiencia, cabe destacar que los alumnos reconocen el carácter bidireccional que tiene el signo de la igualdad en álgebra y la equivalencia de los miembros de una ecuación, identifican la incógnita en una ecuación como un número desconocido, e interpretan ese número como solución de la ecuación; también, que llegan a dotar de significado al algoritmo convencional de despeje.