27 resultados para Enseñanza y aprendizaje de estadística
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Actualmente el sistema educativo brinda autonomía a las instituciones en materia de evaluación, lo que conlleva a replantear las prácticas evaluativas en procura de determinar la efectividad de la apropiación de los desempeños de los estudiantes. Además, se hace necesario hacer una revisión pedagógica que reflexione acerca de las actuaciones de los docentes frente a la evaluación del aprendizaje de sus estudiantes, de manera que puedan ser caracterizadas y revaluadas para mejorar los procesos de enseñanza al interior de su quehacer cotidiano, de esta manera nuestra investigación pretende dar respuesta al siguiente interrogante: ¿Cómo se relacionan las prácticas evaluativas de los docentes con los procesos de la enseñanza y el aprendizaje de la matemática escolar en secundaria y media?, para ello tendremos en cuenta otras preguntas orientadoras, tales como: ¿Qué entiende el profesor por evaluación del aprendizaje? ¿Qué evalúa el profesor de matemáticas en secundaria? ¿Cómo realiza dicha evaluación? ¿Para qué realiza la evaluación en matemáticas? ¿Qué uso le da a los resultados de la misma? ¿Quiénes intervienen en el proceso de la evaluación en matemáticas? ¿Qué relación se puede establecer entre la triada enseñar, aprender y evaluar en matemáticas?
Resumo:
La matemática es un idioma como varios autores han mencionado en diferentes trabajos científicos. En este artículo se analizan y comparan cuatro componentes del lenguaje y la matemática. Por otra parte, la matemática no es exactamente como otros idiomas. De hecho, la matemática parece ser más precisa y más limitada que los otros idiomas y esto tiene varias consecuencias en lo que se refiere a la enseñanza de dicha disciplina. En este artículo comentaremos nuestras experiencias, desarrolladas en Argentina, Alemania y Uruguay, teniendo en cuenta este enfoque de la enseñanza de la matemática como una extensión de la enseñanza de la lengua, y veremos cómo este enfoque ayudó a los estudiantes de los cursos de Cálculo, en diferentes formas.
Resumo:
La calculadora graficadora como herramienta tecnológica ofrece la posibilidad de despertar el interés del estudiante y estimular su entendimiento, y en este trabajo se analiza la puesta en escena de una situación didáctica como nota de clase (Lluck, 2004). Conformada con una secuencia de actividades para ser trabajadas por los alumnos dentro y fuera del aula. Esta secuencia se diseña de tal forma que al ponerla en práctica es posible hacer matemáticas, considerando que dichos saberes matemáticos son necesarios para ser un ciudadano que se desempeñe con éxito en su labor y comprenda la importancia de la matemática en su vida actual y futura.
Resumo:
Los autores de este artículo son profesores investigadores que trabajan en el perfeccionamiento de la enseñanza de las diferentes asignaturas matemáticas del currículo del ingeniero mecánico. El presente trabajo presenta una investigación realizada en el tema de integral indefinida. En el mismo se pudo constatar que la secuencia de presentación de los contenidos se muestra a los estudiantes de forma fragmentada y no como un sistema único, donde se manifiesta la interrelación entre los temas que lo componen. El marco teórico de la investigación es enfoque histórico-cultural de L. S. Vigostky y en particular la teoría de la formación de las acciones mentales por etapas de Galperin y seguidores. En este trabajo se conjugan los aportes de dicha teoría al proceso de enseñanza, los aportes de Z.A. Réshetova en diferentes variantes para la estructuración sistémica de los contenidos de las asignaturas y el empleo de la tecnología educativa.
Resumo:
Ésta investigación se sitúa en la problemática del fracaso escolar en Matemática en estudiantes de Nivel Medio (Corica, Otero, 2005; Gascón et. al., 2001). Nuestro objetivo fue estudiar las ideas de alumnos y profesores acerca del saber matemático, su enseñanza y aprendizaje, para poder explorar los posibles factores que intervienen en el fracaso en Matemática de los estudiantes. En esta investigación se abordan aspectos didácticos a partir de la Teoría Antropológica de lo Didáctico (Chevallard, 1999), aspectos cognitivos a partir de la Teoría de Aprendizaje Significativo (Ausubel, 1976) y aspectos epistemológicos vinculadas al saber matemático a partir de las ideas de Klimovsky (2000). En este trabajo se presentan resultados de dos estudios realizados con estudiantes de Nivel Medio y un tercer estudio vinculado con profesores del mismo nivel.
Resumo:
Este trabajo se centra en la enseñanza y aprendizaje de la distribución normal en un curso introductorio de estadística en la Universidad, y se fundamenta en un marco teórico que plantea el significado institucional y personal de los objetos matemáticos. En particular, se describe el diseño de una experiencia de enseñanza de la distribución normal apoyada en el uso del ordenador y se analizan los avances, dificultades y errores que presentan los alumnos durante el desarrollo de dicha experiencia. En el estudio se presta especial atención a todo lo que implica en la enseñanza de estadística la introducción del computador. Pretendemos aportar información válida sobre la enseñanza/aprendizaje de la estadística en cursos universitarios, que pueda ser completada y ampliada en futuras investigaciones.
Resumo:
En la enseñanza y aprendizaje de las matemáticas los estudiantes deben interactuar entre sí y con el profesor. Los profesores que vinculemos en el aula de clase estrategias de trabajo colaborativo, debemos ser consientes de que no todos los grupos de trabajo; son grupos de trabajo colaborativo, por tanto debemos estar atentos a los interés, expectativas y motivaciones de los estudiantes, permitiendo que la clase de matemáticas sea una clase colaborativa, donde todos los participantes construyan el conocimiento, adquieren responsabilidades y compromisos; una clase que genere confianza, seguridad y respeto, para que todos los estudiantes se desenvuelvan en un ambiente favorable que les permita crear estrategias para abordar una situación problema, argumentar, justificar y validar sus inferencias, todo esto a través de la resolución de problemas.
Resumo:
En este trabajo se realiza un estudio sobre el contenido estadístico en la PAU del Distrito de Canarias. Se observa que los alumnos prefieren las preguntas de Estadística, y que el uso de los gráficos en la resolución de los problemas, conlleva a que obtengan calificaciones más altas. El análisis de los errores nos permite realizar ciertas propuestas para mejorar el proceso de enseñanza-aprendizaje de la Inferencia Estadística. Creemos conveniente para la asimilación de los conceptos y el desarrollo del razonamiento estadístico el uso de las analogías, el manejo de las TICS y el trabajo de proyectos con datos reales.
Resumo:
Uno de los puntos débiles del actual currículo de secundaria en Matemáticas es la enseñanza de la dispersión. Son varios los motivos que ocasionan esta debilidad. En este trabajo se analizarán brevemente algunas investigaciones que nos ayudarán en el aula y en la investigación a mejorar la comprensión de un concepto complejo como es la dispersión. Se indica la importancia de la dispersión en Estadística. Se comprueba que el concepto de dispersión no se incluye en los curriculos oficiales, se analiza el significado de la noción de dispersión y se ejemplifica el desarrollo histórico mediante el devenir a lo largo de la historia de las leyes del error. Finalizamos con unas conclusiones válidas para la enseñanza y la investigación.
Resumo:
En un proyecto de investigación finalizado, se diseñó un software de escritorio para la enseñanza y el aprendizaje del tema Resolución Numérica de Ecuaciones no Lineales, usando el paquete MatLab.
Resumo:
La principal intención de este trabajo es motivar a los docentes e investigadores en educación matemática a integrar en los procesos de enseñanza y aprendizaje de las matemáticas relacionados con el concepto de función, el desarrollo histórico de dicho objeto de estudio. Como segundo objetivo se desea sugerir diferentes actividades que se pueden utilizar para estudiar el concepto de función en los varios niveles de la educación formal. Este artículo se divide en tres secciones. La primera sección es una revisión del desarrollo del concepto de función a través de la historia. La segunda sección es un breve estudio de los tipos de definición existentes y las diferentes formas de representar funciones. La tercera sección es un recuento de actividades o situaciones de interés, con la intención de indicar facetas interesantes a la hora de estudiar el concepto de función.
Resumo:
El trabajo aborda una problemática que ha alcanzado, en los últimos años un nivel considerable dentro de la formación de profesores; se refiere específicamente al estudio de las creencias de los profesores en formación y docentes en relación con la enseñanza y el aprendizaje de la matemática. Se propone, en el presente trabajo, un modelo que posibilita, a partir de un conjunto de sugerencias, el estudio e incidencia en la transformación de las creencias limitativas manifestadas por los profesores que se encuentran en formación. En el modelo se tiene en consideración un momento de estudio que lleva implícita la orientación y la explicitación de las creencias, uno de transformación, donde el objetivo central está en la reestructuración y un momento muy importante que es el de evaluación del cambio de las creencias. El estudio está dirigido a los estudiantes que se encuentran en formación para profesores de Matemática.
Resumo:
En la primera parte de este trabajo se analizan las características generales del proceso de formación, desarrollo y generalización conceptual. Se analiza, además, la importancia de utilizar la resolución de problemas como un medio para facilitar estos procesos. En la segunda parte, a partir de una experiencia docente, se muestra el comportamiento de dos grupos de alumnos que tomaron parte en el proceso de formación, desarrollo y generalización del concepto de media numérica.
Resumo:
El trabajo trata de mostrar los logros en el aprendizaje de la matemática –área de Geometría– a través del contenido transversal Educación para la gestión de riesgos y la conciencia ambiental, usando recursos tecnológicos como Google Maps y Google Earth. El tema desarrollado para tal fin fue el problema sismológico en el Perú. Finalmente, se señalan temas de geometría involucrados, así como temas anexos a través del uso de contenidos de Estadística, Geografía y Ciencias Naturales. La experiencia se hizo con un grupo de 50 alumnas del Tercer año de Educación Secundaria de una escuela pública del Perú.
Resumo:
La introducción de nuevos planes de estudio en Francia (2002), muestra la importancia que tiene actualmente la enseñanza y aprendizaje de la modelación, principalmente en disciplinas científicas como Matemáticas y Física. En los programas oficiales y libros del último año de preparatoria se observa la introducción de la noción de ecuación diferencial como objeto de estudio pero también como herramienta para modelar diversas situaciones físicas. En esta investigación, estableceremos un modelo del proceso de modelación que constituya una referencia para posteriormente caracterizarlo, desde un punto de vista antropológico, en dos instituciones diferentes: la clase de matemáticas y la clase de física.