7 resultados para Elementos-traço
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El SND ha sido considerado un aspecto básico dentro del currículo de matemáticas, debido a su funcionalidad en los procesos de escritura de cantidades y en el desarrollo de algoritmos de operaciones básicas. Acorde a ello, la escuela dedica gran cantidad de tiempo al proceso de escritura y reconocimiento de cantidades, a la comparación de cantidades y al reconocimiento del valor posicional de una cifra, pero aun así los estudiantes no logran comprender los principios báscos del sistema. La presente propuesta se basa en la sistematización de una secuencia de actividades de aula orientada al reconocimiento de los principios que estructuran y dan sentido al S.N.D. como es el proceso de equivalencias entre las unidades del sistema y el reconocimiento del valor de posición de una cifra dada. Para llevar a cabo el proceso de sistematización de experiencias, se retomaron los principios metodológicos de la investigación acción educativa. Estas orientaciones permiten una búsqueda continua de alternativas de trabajo, y a la vez integran la exploración reflexiva que el docente hace de su práctica incidiendo en la lanificación y el mejoramiento de la misma, lo cual constituye un elemento esencial para la formación investigativa de los futuros docentes de matemáticas
Resumo:
Son muchas las investigaciones que han resaltado la importancia de un conocimiento de la evolución histórica de un concepto matemático en la comprensión de los obstáculos y razonamientos de los estudiantes al interior del aula de clase (Posada & Villa,2006). Con base en este argumento, se presenta en este documento los resultados de una indagación histórica sobre la evolución del concepto de función cuadrática que ofrece al lector algunas pautas que le sean útiles a la hora de diseñar situaciones didácticas que involucren el concepto objeto de este estudio.
Resumo:
Se presenta una manera de solucionar ecuaciones cuadráticas a partir de las proposiciones 5 y 6 del libro II de los Elementos de Euclides. Se estudian estas proposiciones, su demostración y aplicación en la solución de las ecuaciones cuadráticas resaltando su valor didáctico. Se presenta además la solución de algunas de las ecuaciones cuadráticas que distinguía Al-Kharizmi, quien utilizaba, al igual que Euclides, la aplicación de áreas en su resolución.
Resumo:
Uno de los puntos débiles del actual currículo de secundaria en Matemáticas es la enseñanza de la dispersión. Son varios los motivos que ocasionan esta debilidad. En este trabajo se analizarán brevemente algunas investigaciones que nos ayudarán en el aula y en la investigación a mejorar la comprensión de un concepto complejo como es la dispersión. Se indica la importancia de la dispersión en Estadística. Se comprueba que el concepto de dispersión no se incluye en los curriculos oficiales, se analiza el significado de la noción de dispersión y se ejemplifica el desarrollo histórico mediante el devenir a lo largo de la historia de las leyes del error. Finalizamos con unas conclusiones válidas para la enseñanza y la investigación.
Resumo:
Se considera que las nociones matemáticas tienen su origen en las ideas germinales que han surgido en diferentes momentos histórico-epistemológicos de la matemática. En la didáctica de la matemática las nociones tienen un papel preponderante como elementos articuladores de los saberes matemáticos que están en juego. En este trabajo se dan algunas evidencias del comportamiento epistemológico acerca de dos nociones: la promediación y la linealidad, las cuales no se perciben en la escuela en su estatus metamatemático. Aparecen en prácticamente todas las etapas escolares y su conceptualización en los diferentes niveles educativos es abordada de forma desarticulada, lo que propicia aprendizajes poco significativos.
Resumo:
Presentamos una reflexión basada en la diversidad escolar como una problemática de los sistemas educativos actuales. A modo de particularizar y evidenciar nuestra postura, elaboramos una discusión alrededor de tres perspectivas del problema. Resaltamos el rol de la matemática en cada una de ellas y la necesidad de realizar investigaciones al interior de cada una de las poblaciones descritas. Nos interesa reflexionar sobre el rol del discurso matemático escolar en contraste con la diversidad escolar, bajo la hipótesis de que el primero no considera las características de los estudiantes, contexto, cultura, factores que la propician. Referiremos a dicha diversidad escolar, tras el análisis de tres comunidades desatendidas por el sistema educativo: los(as) niños(as) con talento cuyas mismas capacidades superiores los aíslan de una educación diferenciada y por el otro, los(as) niños(as) Sordos(as) y niños(as) indígenas, cuya condición física o socioeconómica los determina con rezago educativo.
Resumo:
Con el objeto de mejorar la apropiación de herramientas para el pensamiento variacional, el presente trabajo presenta indagaciones realizadas en torno a gráficas de variación en el tiempo, en especial aquellas de distancia en el tiempo. Entendemos que construir aprendizajes implica introducir al estudiante en prácticas matemáticas que potencien las nociones a construir, por ello reconocer las situaciones en que las gráficas distancia‐tiempo y, en particular el tiempo, son necesarios para comunicar y trabajar concambios, se torna central. El presente reporte da cuenta de experiencias exploratorias con base en la necesidad de comunicar cambios, recurriendo a representaciones gráficas, de modo de constatar en qué situaciones se representa al tiempo en tales gráficas.