7 resultados para Daniela Seggiaro

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La investigación que reportamos, da cuenta de un estudio sobre la comprensión del concepto Elipse en estudiantes entre 16 y 18 años, bajo un enfoque cognitivo, donde se utiliza los modos de pensamiento de Anna Sierpinska como marco teórico y, estudio de casos como diseño metodológico. Nuestra problemática se sitúa al abordar la elipse solamente a través de las ecuaciones cartesianas, afirmamos que estas técnicas no son suficientes para lograr una comprensión profunda del concepto, cuando decimos comprensión profunda, estamos pensando en que el estudiante pueda comprender la elipse en los modos: Sintético-Geométrico (como sección cónica en el espacio/curva que la representa en el plano), Analítico-Aritmético (como pares ordenados que satisfacen la ecuación de la elipse) y Analítico - Estructural (como lugar geométrico). A lo largo de la investigación evidenciamos que los estudiantes logran una mayor comprensión del concepto elipse cuando se enfrentan a situaciones donde interactúan los tres modos de pensar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La propuesta de innovación surge por las dificultades de los estudiantes en el aprendizaje de la geometría proporcional, en particular, en la propiedad Potencia de un punto exterior a la circunferencia.Para su diseño se considera como referente teórico, la articulación propuesta por Montoya (2010), complemento entre “Paradigmas geométricos” de Houdement y Kuzniak y los Procesos de Pruebas de Balacheff. En base a antecedentes obtenidos de un estudio epistemológico del objeto, se diseñan distintas pruebas que propician el tránsito entre los paradigmas de la geometría natural (GI ) y la geometría axiomática natural (GII) , aportando así en el aprendizaje de la propiedad en estudio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El estudio de la matemática permite la modelización de situaciones que conducen a la resolución de problemas. Por esto, es primordial que los estudiantes analicen los cambios que ocurren en diferentes fenómenos biológicos, económicos y sociales. Sin embargo, durante la escuela media, no se favorece demasiado el desarrollo del pensamiento y lenguaje variacional, base para la comprensión de los conceptos de la matemática de la variación y el cambio, es decir el cálculo. Por este motivo, este trabajo, enmarcado en el proyecto de investigación “Pensamiento y lenguaje variacional: bases para la construcción de conceptos del cálculo diferencial”, tiene como objetivo el análisis y valoración de los resultados obtenidos en una experiencia de aula centrada en el diseño, implementación y corrección de una guía de actividades que indaga las nociones que tienen los alumnos que ingresan al nivel universitario con respecto a variables, cambios, funciones, imagen, gráficas, expresión analítica, valor numérico y comportamiento de funciones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el ámbito de la investigación en Matemática Educativa son conocidas las dificultades que plantean la enseñanza y el aprendizaje de contenidos del cálculo. En la búsqueda de alternativas que favorezcan un desarrollo adecuado de métodos de pensamiento propios de la matemática, diseñamos y pusimos a prueba una secuencia didáctica para la introducción del concepto de derivada. Consideramos como hipótesis básica que el desarrollo de ideas variacionales puede propiciar una mejor comprensión y apropiación de esta noción, adoptando la posición de que el manejo de sistemas de representación es fundamental para la actividad cognoscitiva del pensamiento. Presentamos algunas de las actividades trabajadas en clase y un breve análisis sobre su implementación y las respuestas de los alumnos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se sustenta una propuesta didáctica para la comprensión de las cónicas en estudiantes de 16 a 18 años de edad, a partir de una investigación con enfoque cognitivo, desde la teoría los modos de pensamiento de Anna Sierpinska, donde se distinguen tres modos de pensar un concepto: sintético-geométrico (SG), analítico-aritmético (AA) y analítico-estructural (AE). Nuestra problemática se sitúa en la enseñanza-aprendizaje de las cónicas cuando el discurso matemático escolar da prioridad a las ecuaciones cartesianas que las describen. Consideramos que el énfasis en esas ecuaciones, promueve la pérdida de su estructura como lugar geométrico. Como resultado de investigación, se diseña una propuesta didáctica exploratoria en la geometría del taxi, con la convicción de que el aprendiz entiende las cónicas cuando transita entre los distintos modos de comprenderlas: SG (como figuras que las representan), AA (como pares ordenados que satisfacen una ecuación) y AE (como lugar geométrico).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente investigación surge en el programa “perfeccionamiento en matemática para profesores de enseñanza media” realizado en el IUFM le Mirail, Universidad de Toulouse, Francia. El estudio consiste en el diseño de una propuesta didáctica para el aprendizaje de la ecuación vectorial de una recta en el espacio, en estudiantes de 16 a 18 años, el interés nace por la incorporación de estos temas en el curriculum nacional. Para el diseño de la propuesta se utiliza elementos de la Teoría Antropológica de lo Didáctico (TAD), donde se entenderá como organización matemática, a un conjunto de tipos de tareas, de técnicas o procedimientos para resolver estas tareas y de definiciones, propiedades y teoremas que permitan describir y justificar la resolución de la tarea. Entre los elementos que aportan en el surgimiento de la organización matemática, se distinguen, tipos de tareas como, establecer si puntos del plano o el espacio son colineales y determinar las condiciones para que un tercer punto sea colineal a dos puntos dados, en el plano o en el espacio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frecuentemente, al iniciar el estudio de conceptos básicos del análisis matemático, nos encontramos con dificultades y errores relacionados con la división por cero. La necesidad de dar respuesta a esta problemática, da origen a este trabajo que retoma las respuestas dadas por un grupo de alumnos de la escuela media que constituyen las evidencias sobre las cuales se inicia el proceso de investigación que se encuentra en su primera etapa de realización y cuyos resultados parciales se exponen aquí. Se enmarca la tarea en la perspectiva socioepistemológica indagando en los orígenes y evolución de este conocimiento, analizando los alcances y efectos del discurso matemático escolar vigente en la educación media y contemplando las concepciones de los alumnos acerca del cero y la división construidas en ambientes escolarizados y no escolarizados.