16 resultados para DISEÑO ORIENTADO A OBJETOS
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En esta investigación, en proceso, pretendemos el diseño, desarrollo y evaluación de Objetos de Aprendizaje (OA) lo que permitirá probar y validar una metodología de diseño y producción de OA al interior de la institución, así como la utilización de la Web como medio de interacción y cooperación entre individuos en los procesos educativos. La producción de OA con esta metodología se plantea bajo un equipo de trabajo que analiza las necesidades del grupo destinatario, los contenidos, los recursos tecnológicos, los procesos de evaluación, entre otros, para la producción de cada OA.
Resumo:
Se busca generar una discusión sobre el proceso de diseño y sistematización de una experiencia de aula en la cual se integra el Ambiente de Geometría Dinámica (AGD) Cabri 3D en el aprendizaje de la transformación de rotación en el espacio. En nuestra propuesta, encontramos investigaciones importantes en didáctica de las matemáticas que han puesto en evidencia las dificultades que los estudiantes presentan comúnmente en la exploración de propiedades de los objetos geométricos en el espacio, e incluso la representación de los mismos en él. Por lo cual, la comunicación se apoya en una aproximación instrumental que busca dar cuenta del papel mediador de Cabri 3D como un instrumento construido por el sujeto en el contexto de aprendizaje de la geometría. La propuesta se basa en el diseño de una situación didáctica en la que se integra el AGD Cabri 3D; hemos introducido una categoría que caracteriza el objeto matemático a movilizar en la secuencia de situaciones didácticas, esta categoría es la transformación de rotación en el espacio. La primera caracterización debe darse desde el reconocimiento de la Geometría transformacional como una alternativa para que los estudiantes construyan conocimiento del espacio a partir de la exploración y actuación sobre el mismo, así en la propuesta de la secuencia didáctica se tomara en consideración que la transformación de rotación posibilita la exploración de aspectos complejos tales como el sentido, la magnitud angular y la invarianza de propiedades. Esta última (la invarianza de propiedades) es uno de los aspectos más importante que se deberán distinguir en el diseño de la secuencia didáctica; en la composición de rotaciones por ejemplo, se reconoce como importante que los estudiantes tengan la capacidad de poder determinar cuáles objetos geométricos, puestos en juego en la transformación, conservan sus propiedades, así como poder determinar dentro de la rotación qué se conserva invariante. La segunda caracterización es el reconocimiento de la visualización como medio para que el estudiante interprete la información gráfica de conceptos matemáticos que se le presentan, con el fin de resolver un problema y realizar conjeturas acerca de la noción matemática que está trabajando. La pregunta central para animar la discusión en torno a nuestra comunicación es la siguiente: ¿Cómo influye el uso de Cabri 3D en el estudio del espacio y la exploración de la noción de transformación de rotación en el espacio?, ¿En la organización de la clase y los dispositivos que se deben implementar en la misma?
Resumo:
Este trabajo se centra en la enseñanza y aprendizaje de la distribución normal en un curso introductorio de estadística en la Universidad, y se fundamenta en un marco teórico que plantea el significado institucional y personal de los objetos matemáticos. En particular, se describe el diseño de una experiencia de enseñanza de la distribución normal apoyada en el uso del ordenador y se analizan los avances, dificultades y errores que presentan los alumnos durante el desarrollo de dicha experiencia. En el estudio se presta especial atención a todo lo que implica en la enseñanza de estadística la introducción del computador. Pretendemos aportar información válida sobre la enseñanza/aprendizaje de la estadística en cursos universitarios, que pueda ser completada y ampliada en futuras investigaciones.
Resumo:
El documento para el área de Matemáticas de la serie Lineamientos Curriculares (MEN, 1998) es una directriz legal, conceptual y metodológica para el diseño, gestión y evaluación de los procesos de formación que adelantan los educadores matemáticos colombianos. En este sentido y particularmente en lo que se refiere al pensamiento aleatorio y su desarrollo, el Proyecto Curricular LEBEM9 brinda un espacio de formación para el estudio de los objetos estocásticos. En esta investigación se presenta una caracterización del significado institucional pretendido sobre Probabilidad como objeto disciplinar para brindar elementos de análisis sobre el proceso del proyecto curricular en esta dirección.
Resumo:
Unidad didáctica sobre razones trigonométricas para educación secundaria.
Resumo:
En esta comunicación se presenta la primera parte de una investigación cuyo objetivo fue analizar si un experimento de enseñanza diseñado ad hoc ayudó a la construcción de caracterizaciones equivalentes del concepto de dependencia lineal, en lenguaje geométrico y analítico. En primer lugar se diseñó un experimento de enseñanza en un contexto de geometría dinámica utilizando simultáneamente representaciones geométricas y analíticas del concepto y se describió una ‘trayectoria hipotética de aprendizaje’ en términos del mecanismo de ‘reflexión sobre la relación actividad-efecto’. En segundo lugar se describieron las trayectorias de aprendizaje de estudiantes de 2o de bachillerato (17-18 años) identificando las ‘acciones de generalización’ y las ‘generalizaciones de la reflexión’.
Resumo:
Adoptaremos aquí el enfoque de resolución de problemas en la perspectiva de Charnay, este autor plantea unos momentos en el desarrollo de la situación problemática por parte del estudiante, denominados Formulación, Argumentación, Validación e Institucionalización del conocimiento matemático. En nuestra interpretación esto implica que, el profesor pone en juego distintos tipos de conocimientos vinculados a la cognición matemática, la planeación y diseño de actividades, la gestión en el aula y la evaluación por competencias de manera que en la transposición didáctica se genere el contrato entre él y el alumno y las respectivas devoluciones. Asumiremos entonces que en un primer momento el profesor se coloca en el papel de resolutor (hace cognición para comprender el problema, para formular conjeturas, dice que sabe sobre los objetos matemáticos involucrados en la situación problemática), luego investiga (procura salirse del problema para buscar argumentos y razones matemáticas que sustenten las conjeturas iniciales de sus alumnos) y por ultimo diseña e implementa la situación problemática (planea, diseña, gestiona y evalúa).
Resumo:
La presente ponencia resume el inicio de la construcción de un laboratorio de física y matemáticas en el programa de la Licenciatura en Matemáticas y Tecnologías de la Información, de la Universidad La Gran Colombia. Se presenta la experiencia en el diseño de la primera actividad y de los constructos teóricos y prácticos que se tuvieron en cuenta. Esta experiencia de aula está avalada dentro de la conformación de un semillero de investigación de la facultad, y muestra cómo a partir de un sistema masaresorte se pueden construir algunos conceptos fundamentales como el período de funciones, el comportamiento de las mismas y destacar la importancia del modelado de datos para su respectivo análisis y obtener así una aproximación por medio de la matemática.
Resumo:
La presente comunicación busca poner de manifiesto algunas consideraciones que se pueden tener en cuenta a la hora de diseñar rutas de aprendizaje en torno al concepto de límite. En este sentido, el documento se estructura por medio de dos preguntas cuyas respuestas coinciden con las dos principales consideraciones resultado de este trabajo; dichos interrogantes (para qué de la enseñanza del límite, y cómo lograrla) permiten evidenciar la comprensión del concepto límite como un proceso que da lugar al desarrollo de procesos de profundización, con los cuales se alcanza la forma más pura de la competencia matemática.
Resumo:
El presente trabajo de investigación tiene por objetivo la obtención de indicadores para la organización de saberes matemáticos correspondientes al área de Precálculo, Geometría y Álgebra de nivel medio. Para la consecución de éste, se realiza en primera instancia un estudio documental el cual permitiera generar un estado del arte de propuestas didácticas generadas en Matemática Educativa en la última década, seguido de un estudio descriptivo cuyo objetivo es identificar aquellos elementos que caracterizan las propuestas como favorecedores de la construcción del conocimiento matemático. Particularmente nos centraremos en los resultados obtenidos al momento en el área de Precálculo, entre los cuales se tiene que las propuestas didácticas parecen tener en común el que la construcción del conocimiento se dé a través de la práctica humana y el carácter científico de los conocimientos matemáticos, como son: la predicción, la visualización y la modelación. La tecnología ya no es un recurso para el profesor sino una herramienta para el estudiante.
Resumo:
En esta conferencia presentaré algunos resultados del estudio realizado sobre un fenómeno relacionado con la articulación de los sentidos asignados por estudiantes a diferentes representaciones de un objeto matemático, obtenidas mediante transformaciones semióticas de tratamiento. En este estudio describí y analicé algunos procesos de asignación de sentidos logrados por los estudiantes de grados 9o y 11o de educación básica y media (Colombia), en relación con tareas específicas en las que requieren realizar dichos tratamientos entre representaciones, y reporté algunas dificultades asociadas.
Resumo:
En este documento presentamos un instrumento que hemos diseñado con el objeto de obtener información sobre la ansiedad matemática y la autoconfianza en matemáticas de alumnos que realizan el paso de la educación secundaria a la educación universitaria así como su relación con el género y la elección de titulaciones. Se trata de una entrevista con la que buscamos superar las dificultades de comunicación que se generan cuando se pregunta directamente por sus sentimientos a los adolescentes para lo que hemos recurrido a técnicas proyectivas. En este artículo mostramos además los resultados obtenidos de su aplicación, que permiten valorar su idoneidad.
Resumo:
Al introducir las nuevas tecnologías a los escenarios escolares se provocan reacciones (Chevallard, 1992) debido a que altera la armonía del Sistema Didáctico (el cual está compuesto por tres componentes; estudiantes, profesor y el saber). La relación entre los componentes del sistema didáctico se modifican debido a que existe un instrumento mediador que participa transformando las prácticas. Este proceso de integración requiere establecer las condiciones de equilibrio del Sistema Didáctico, al replantear el dominio del conocimiento, al caracterizar la interacción entre los estudiantes y el profesor, al ubicar el papel de la tecnología en el currículo, Laborde, (2001) y desde la perspectiva socioepistemológica, (Cantoral, 2004; Castañeda, 2004) explicar cómo se modifican las prácticas y cómo se construyen nuevos escenarios para el estudio de las matemáticas. Este trabajo de investigación propone describir las prácticas asociadas al estudio de la derivada en un ambiente tecnológico en las que se ponen en juego diversas situaciones interrelacionadas utilizando objetos java. Estos objetos, cuyo escenario natural de aplicación es en la red de Internet, se caracterizan por la disponibilidad de manipulación.
Resumo:
En años recientes, un cuerpo creciente de investigaciones en didáctica de las matemáticas han identificado algunas dificultades en relación con la enseñanza y aprendizaje de contenidos temáticos, procesos y contextos relacionados con el pensamiento espacial y sistemas geométricos, siendo comúnmente atribuidas a causas de orden epistemológico, cognitivo, curricular y didáctico. En este marco se genera la necesidad de integrar recursos, específicamente materiales manipulativos, al currículo y a las prácticas escolares, que permitan fortalecer en los estudiantes los conocimientos obtenidos para resolver algunos problemas de su entorno escolar y cotidiano.
Resumo:
Existen en el mercado herramientas que permiten cortar, limpiamente, el llamado corcho blanco o styropor. Las piro-sierras son las más elementales y pueden conectarse tanto a la red eléctrica como a una pila. La casa Ayllón tiene comercializada una piro-sierra bastante elaborada. Pero, si lo que deseas es cortar styropor en grandes cantidades y dimensiones, la mesa que se describe a continuación puede serte de utilidad.