9 resultados para Cortés, Hernán, 1485-1547
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La presente propuesta es una aproximación reflexiva y critica de las prácticas evaluativas que se vienen desarrollando en la enseñanza básica y media en las instituciones de carácter privado de la ciudad de Cali, sustentada desde nuestra propia experiencia como docentes en ejercicio y estudiantes de último semestre en Licenciatura de Matemáticas y Física de la Universidad del Valle, y apoyada en el análisis de unas actividades piloto de intervención y evaluación matemática, en torno a diferentes nociones y conceptos relacionados con la estructura conceptual del tópico de proporción y proporcionalidad en los grados de séptimo de educación básica y décimo de educación media que se realizaron a fin de plantear una serie de interrogantes cruciales en torno a la evaluación, dado su carácter organizador, dinamizador y potencializador del currículo. Esta propuesta se apoyará en el marco metodológico de los organizadores del currículo, donde la evaluación es un eje fundamental en el análisis didáctico que permite la articulación y organización de un currículo significativo para los intereses de los educandos.
Resumo:
En el siguiente artículo se propone un acercamiento numérico y gráfico al concepto de derivada y de función derivada. Para ello se propone iniciar introduciendo las ideas de diferencias, incrementos y razón de incrementos. El que esto escribe diseño y desarrollo un software de apoyo a la introducción de estas ideas. Para abordar la temática se exponen ideas teóricas, una exposición de lo propuesto en el software y algunos resultados obtenidos.
Resumo:
El presente trabajo tiene la intención de analizar las fases de las prácticas de modelación en la escuela y el papel de la analogía como una de ellas. Las prácticas de modelación las caracterizamos como prácticas recurrentes de diferentes comunidades que articulan dos entidades (fenómenos y sus referentes matemáticos) con la intensión de intervenir en una de ellas a partir de la otra. Esta caracterización plantea de entrada la interacción con el fenómeno, esto define a la primera fase, emergiendo la experimentación en el sentido amplio. La segunda fase, la caracterizamos como el acto de modelar, en donde se realiza la articulación por medio de alguna acción de las entidades participantes; la tercera fase es la articulación de los modelos con el fenómeno en una red. Una cuarta fase es la analogía que descentra la red de modelos del fenómeno original que le dio lugar. En esta fase se pretende la articulación de redes de modelos, dando lugar a redes de redes.
Resumo:
Una pregunta que me plantean con mucha frecuencia los estudiantes es ¿qué significado tiene la integral?; con este trabajo pretendemos incursionar en la problemática referida a la formación de la significación física de la integral, para lograrlo partimos de la idea de que esa significación tiene que ver por un lado con las concepciones matemáticas “heredadas” por los profesores a sus alumnos y por otro con los procesos de matematización de fenómenos en diversos contextos. Hemos realizado un primer acercamiento exploratorio para recoger evidencias, que nos permita elaborar una secuencia basada en prácticas de modelación de fenómenos. Reportamos como es construida la significación física de la integral en el discurso. Un resultado consecuente, es una aproximación a la concepción de práctica social.
Resumo:
La historia de la ciencia muestra la íntima relación entre la física y la matemática y cómo en nuestros días esta relación, en el ambiente escolar, se ha ido perdiendo. Nuestro planteamiento intenta recuperar el papel de la experimentación en el aula. Proponemos diseños de aprendizaje basados en prácticas de modelación de fenómenos físicos, para que alumnos construyan conocimientos con significado. En el documento damos evidencia de cómo este planteamiento puede ser posible. La investigación es desarrollada, adoptando la perspectiva teórica llamada Socioepistemología y la metodología empleada es sustentada en la Ingeniería Didáctica.
Resumo:
En este artículo se estudia una familia de juegos infinitos y se caracteriza, en dos sentidos diferentes, cuándo se da el equilibrio. El trabajo está escrito para ser aprovechado directamente en el aula, por eso se realiza el estudio desde casos sencillos y particulares y se conduce al lector hacia una primera generalización. Obtenida la primera solución general, se discute su aplicabilidad real y se propone otra generalización, diferente a la primera, en consonancia con la realidad. Esta segunda generalización requiere de la introducción del concepto de apuesta y de la caracterización general de juego justo o equilibrado.
Resumo:
El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.
Resumo:
La nueva dirección de SUMA nos pregunta qué línea va a seguir “Desde la Historia”. Las líneas se hacen andando, que diría Machado, y esta respuesta es no sólo cierta en general sino obligada en nuestro caso para esta sección de la revista. No somos especialistas en historia de las matemáticas, sólo simples aficionados, y ello nos impide concretar mucho los contenidos. Sí somos especialistas otra cosa es que seamos buenos especialistas en animar tertulias sobre matemáticas para adolescentes y ello será, junto con lo que leamos y especulemos, la fuente de nuestra aportación a “Desde la Historia”. Desde nuestro profundo convencimiento de que el quehacer didáctico es un arte más que una ciencia –y aquí nos resulta obligado el recuerdo de Paco Hernán-, y por tanto improgramable, nos dejaremos llevar también aquí de la intuición de cada momento: fiaremos a la motivación contenidos y digresiones, apasionamientos, descaros y concurrencias. Lo que escribamos estará seguramente muy relacionado con las conexiones que nuestras clases nos motiven, de manera que lo más probable es que haya en los artículos una fuerte interdisciplinariedad, una mezcla de intereses personales sobre historia y de reflexiones sobre didáctica. En cualquier caso intentaremos responder a la renovada confianza que SUMA nos ha mostrado y que sinceramente agradecemos. Por supuesto, nuestra dirección de correo está disponible para cualquier sugerencia, aportación o crítica que los lectores y lectoras de SUMA queráis hacer.
Resumo:
Este artículo comienza con un postulado y algunas definiciones, sigue con una tesis bastante categórica y un análisis breve e incompleto que se ha levantado para sostenerla, y acaba extrayendo algunas consecuencias.