13 resultados para Contrastes de Hipótesis

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo se recoge un estudio de los errores que cometen los alumnos de bachillerato al resolver problemas de contrastes de hipótesis en los exámenes de la PAU (Prueba de Acceso a la Universidad). A raíz de éstos, se señalan aquellas dificultades y confusiones más frecuentes con las que tropieza el alumno, y se sugieren algunas alternativas para ayudar a superarlas, tratando de contribuir en el proceso de enseñanza-aprendizaje de esta materia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

El inicio del estudio de la proporción de nacimientos de niños y niñas (sex ratio) comienza en el siglo XVIII y ha ocupado a grandes matemáticos. En 1712 John Arbuthnott ya trató de explicar el hecho comprobado de que el número anual de nacimientos de niños superaba al de niñas. Esto supone el primer ejemplo de un contraste de significación y el germen de la técnica de los contrastes de hipótesis estadísticas. El objetivo de este artículo es mostrar estos inicios y reflexionar sobre su utilidad didáctica hoy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este trabajo pretendemos sintetizar algunas cuestiones de método aplicables a la investigación educativa. Para ello reflexionamos sobre el método seguido para la realización de una amplia investigación de referencia, Vallecillos (1994), que pertenece al campo de la educación estadística. Es un ejemplo de lo que podemos llamar ‘método estadístico’ que puede aplicarse como ‘modelo’ en la investigación educativa en general. Se incluyen también, a modo de ejemplo de su funcionamiento, los resultados obtenidos en esa investigación sobre la comprensión de un concepto clave en los contrastes de hipótesis como el nivel de significación.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se repasa el planteo tradicional del criterio de la integral para la convergencia de series (con las hipótesis de que la función en cuestión sea continua, positiva y decreciente, y la conclusión de que la serie y la integral impropia convergen ambas o divergen ambas). Se muestran ejemplos en los que fallan una o más de las hipótesis y la conclusión del criterio falla. Se demuestra que son innecesarias las hipótesis de continuidad y positividad, y finalmente que basta con una condición aún más débil que la de que la función sea decreciente. Los resultados se aplican tanto a la equivalencia entre la convergencia de la serie y la convergencia de la integral impropia como a la fórmula para la cota del error en las sumas parciales cuando la serie converge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La enseñanza de la matemática elemental ha seguido siendo fuente de frustración y desconcierto a causa de los bajos resultados en su aprendizaje. Las alternativas de solución que se manejan tienden a centrarse en aspectos internos de la asignatura. Rara vez se tocan otras aristas de ese complejo proceso. Sucesivas investigaciones realizadas por espacio de tres años, en la provincia de mayor población educacional de Cuba, corroboran la posibilidad de obtener menores resultados académicos de considerarse ciertos aspectos socio-culturales. El propósito de esta ponencia es describir los resultados principales de tres investigaciones pedagógicas que, encaminadas al mejoramiento del aprendizaje de la matemática, se han venido realizando sucesivamente en ese territorio, y formular las hipótesis que ha generado la investigación del curso 1998-1999, como resultado de la progresiva ampliación del objeto de investigación. Esas hipótesis sugieren el inicio de nuevas investigaciones de constatación y de transformación, más allá del estrecho marco del proceso de enseñanza-aprendizaje de una asignatura aislada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo establecemos la siguiente hipótesis: el sistema conjeturas-pruebas-refutaciones constituye la lógica del descubrimiento matemático escolar; bien entendido que en las matemáticas de la enseñanza secundaria el énfasis no puede situarse en la frontera móvil que Lakatos (1978) ha señalado en el trabajo de los matemáticos profesionales, esto es, la frontera demostraciones/refutaciones sino más bien en la frontera anterior, conjeturas/demostraciones. Dicho sistema supera didácticamente al enfoque unidimensional de demostración como prueba formalizada, enfoque tradicional del estilo deductivista en la enseñanza de las matemáticas. Esta hipótesis surge del análisis de las dificultades epistemológicas, cognitivas y didácticas del concepto de demostración (en particular, de la demostración por reducción al absurdo) y de la revisión de algunos estudios experimentales sobre la práctica escolar de la demostración.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presentamos una reflexión basada en la diversidad escolar como una problemática de los sistemas educativos actuales. A modo de particularizar y evidenciar nuestra postura, elaboramos una discusión alrededor de tres perspectivas del problema. Resaltamos el rol de la matemática en cada una de ellas y la necesidad de realizar investigaciones al interior de cada una de las poblaciones descritas. Nos interesa reflexionar sobre el rol del discurso matemático escolar en contraste con la diversidad escolar, bajo la hipótesis de que el primero no considera las características de los estudiantes, contexto, cultura, factores que la propician. Referiremos a dicha diversidad escolar, tras el análisis de tres comunidades desatendidas por el sistema educativo: los(as) niños(as) con talento cuyas mismas capacidades superiores los aíslan de una educación diferenciada y por el otro, los(as) niños(as) Sordos(as) y niños(as) indígenas, cuya condición física o socioeconómica los determina con rezago educativo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el ámbito de la investigación en Matemática Educativa son conocidas las dificultades que plantean la enseñanza y el aprendizaje de contenidos del cálculo. En la búsqueda de alternativas que favorezcan un desarrollo adecuado de métodos de pensamiento propios de la matemática, diseñamos y pusimos a prueba una secuencia didáctica para la introducción del concepto de derivada. Consideramos como hipótesis básica que el desarrollo de ideas variacionales puede propiciar una mejor comprensión y apropiación de esta noción, adoptando la posición de que el manejo de sistemas de representación es fundamental para la actividad cognoscitiva del pensamiento. Presentamos algunas de las actividades trabajadas en clase y un breve análisis sobre su implementación y las respuestas de los alumnos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta investigación desarrollada desde la perspectiva teórica de la aproximación socioepistemológica, se presenta, la producción y puesta en escena de una secuencia basada en la ingeniería didáctica. De manera específica, este trabajo indaga sobre qué alternativas pueden ser factibles para la construcción escolar del significado de los números complejos, bajo la hipótesis de que su significado puede ser construido a través del proceso de convención matemática. El análisis de la producción de los estudiantes, al trabajar una secuencia de actividades diseñada por nosotros en base a la hipótesis anterior, da evidencia de que a pesar que los estudiantes insistían en que “las raíces cuadradas de números negativos no existen”, nuestra secuencia los indujo a operar con ellos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El rol del aprendizaje significativo mediante la utilización de nuevas estrategias de enseñanza. Este aprendizaje involucra un proceso en el que lo que aprendemos es el producto de la información nueva, interpretada a la luz de lo que ya sabemos. Para que haya aprendizaje significativo, es necesario que el alumno pueda relacionar el material de aprendizaje con la estructura de conocimientos de que ya dispone. De esta forma, junto con la motivación favorable para la comprensión, y, los esfuerzos que requiere, una condición esencial del aprendizaje de conceptos será que estos se relacionen con los conocimientos previos de los alumnos. El nuevo conocimiento, que queremos que el alumno aprenda en esta oportunidad, surgirá de un adecuado desarrollo del razonamiento deductivo y manejo de los conocimientos previos. Entendiendo por razonamiento deductivo al proceso de razonamiento en que, para obtener una conclusión lógicamente necesaria a partir de ciertas premisas, los pasos están encadenados siguiendo ciertas reglas lógicas y son justificados rigurosamente. Las justificaciones están basadas en los axiomas y definiciones de la teoría respectiva, en teoremas demostrados con anterioridad y en las premisas o hipótesis del problema o teorema. El docente debe ayudar al estudiante a desarrollar y usar el poder del razonamiento deductivo comprometiéndolo permanentemente a pensar, analizar y deducir conjeturas en clase, además debe crear y seleccionar tareas apropiadas que puedan involucrar la generalización, la organización de datos para validar o refutar una conjetura. Un grupo de bachillerato del último año desarrolló la demostración de un teorema de convergencia de series, con los resultados de un 46% que la realizó exitosamente, versus un 36% que no lo logró. Los alumnos que lograron hacer la demostración, no eran los más estudiosos pero tenían una buena capacidad de razonamiento. En cambio los que generalmente preparan las evaluaciones y que se apoyan mucho en la memoria, no lograron un buen desempeño.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las aportaciones del presente trabajo-informe provienen de las múltiples ocasiones que, en conferencias escuchadas, ponencias asistidas, artículos de revistas y de prensa, conversaciones privadas, Jorge Wagensberg (Director científico de los Museos de Ciencia de la Fundación La Caixa) me (nos) ha tratado de comunicar, tras una experiencia de más de 20 años en el Museo de la Ciencia de Barcelona, cuáles eran las hipótesis de trabajo para construir y desarrollar, en el mismo lugar pero con mucho más espacio, un nuevo Museo de la Ciencia. También de la experiencia generada por una exposición de la Fundación La Caixa “Y después fue... ¡La Forma!” que ha itinerado por múltiples lugares de España (en particular estuvo en el Museo Elder de Las Palmas de Gran Canaria entre Noviembre de 2003 y Febrero de 2004). Y, por último, de la realidad del Museo CosmoCaixa de Barcelona, ya inaugurado el pasado 23 de Septiembre. Todo esto (hipótesis, experiencia y realidad) que Jorge Wagensberg nos ha contado antes y mostrado ahora, es pura museología científica en su forma más moderna y más actual.