10 resultados para Conjuntos num

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se presenta un modelo para caracterizar el razonamiento estadístico de los estudiantes al interpretar la información que es representa por el gráfico de gajas. El origen de dicho modelo se motiva en una experiencia de aula que considera y aplica los resultados obtenidos en una investigación realizada como trabajo de grado de la Maestría en Docencia de las Matemáticas y adscrita a la línea de investigación en Educación Estadística de la Universidad Pedagógica Nacional en el año 2009. Esta investigación pretende categorizar el razonamiento estadístico de un grupo de estudiantes de secundaria en un colegio público de la ciudad de Bogotá. Para obtener dicha categorización se propuso comparar conjuntos de datos representados mediante gráficos de caja. y, se empleó la teoría de clasificación conocida como taxonomía SOLO, la cual a su vez fue articulada con siete elementos de razonamiento sugeridos por los autores del presente trabajo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este artículo se presenta una propuesta para introducir el concepto de función convexa de un modo diferente al habitual, complementario a éste, que se apoya en la relación entre convexidad de funciones y conjuntos convexos, y que no requiere que la función sea derivable. Además, permite obtener, de forma sencilla y unificada, las desigualdades numéricas clásicas a partir de la convexidad de ciertas funciones

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta comunicação está inserida no desenvolvimento de um projecto de investigação que procura compreender a forma como os professores de matemática podem integrar o uso de materiais tecnológicos em benefício da aprendizagem dos alunos. O projecto centra-se essencialmente nos materiais electrónicos que acompanham os manuais escolares, CD-Roms, eBooks, portais, filmes e conjuntos de outras actividades que apelam ao uso do computador. Procura-se compreender o papel que estes materiais desempenham no processo de ensino aprendizagem, nomeadamente na forma como os professores se apropriam desses materiais e o uso que fazem dos mesmos na sala de aula. Procurar-se-á apresentar nesta comunicação um breve enquadramento teórico do tema em estudo indicando as principais opções assumidas pelos autores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O uso cada vez mais intenso de conceitos subjetivos - provenientes da lógica fuzzy - aplicados a problemas reais nos motivou a desenvolver procedimentos para a introdução destas idéias no âmbito do ensino médio. O projeto propõe inicialmente o estudo de conjuntos fuzzy que podem ser entendidos com exemplos - de variação populacional, de controle de pragas e de epidemias. Posteriormente, usar as “operações fuzzy” Sup e Inf em produtos de matrizes para realizar diagnósticos e avaliações subjetivas. As situações abordadas já estão na literatura (Barros e Bassanezi, 2006), entretanto não como fonte para o Ensino Médio. Um dos objetivos principais deste trabalho é contrapor a crença de exatidão da matemática clássica com os resultados provenientes de lógica subjetiva, utilizando conceitos apropriados para os estudantes destas séries: teoria dos conjuntos, relações e funções, matrizes, equações de diferenças e outros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uno de los problemas centrales que se presentan, para abordar el tema de límite, es sin duda cuando nos enfrentamos al concepto de infinito. Generalmente el docente al enseñar el concepto de infinito utiliza metáforas didácticas basadas en conjuntos muy grandes, esto para fijar la idea de infinitud. De acuerdo con la real academia española, esto permite crear la noción de infinito en un lenguaje cotidiano, lo que lleva a generar una mala formación de este concepto, dentro de un lenguaje matemático, ya que la imprecisión del lenguaje cotidiano hace ver al concepto de infinito muy vago y se aleja de la idea matemática como unidad total (Ortiz, 1994). El interés de nuestro trabajo se centra precisamente en el diseño de actividades, donde el estudiante pueda realizar y observar un proceso infinito, a través de ejemplos geométricos donde se presente la situación límite (proceso infinito culminado), permitiendo la formación del concepto de límite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La enseñanza y el aprendizaje formalizado de los números irracionales en la formación inicial de profesores de secundaria son problemáticos. Un análisis histórico y epistemológico de la noción de número irracional, sirve de base para enmarcar un estudio empírico, con estudiantes para profesor, que indaga el proceso de construcción de la noción de cardinalidad del conjunto de los números irracionales y la densidad de en R\Q en R. El estudio se realiza por medio de algunos elementos teóricos del enfoque ontosemiótico del conocimiento de y de la instrucción matemáticos. La identificación, por parte del estudiante, de la cardinalidad de conjuntos infinitos, hace posible la emergencia de fenómenos relativos a los cardinales transfinitos, determinándose diferentes tipos de errores y conflictos cognitivos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Para conocer un todo no es necesario el conocimiento exhaustivo de cada uno de los elementos que lo componen. Basta con determinar sus elementos fundamentales y saber qué leyes determinan la relación entre ellos y los demás. Solamente un todo pequeño (finito) puede conocerse por completo, elemento a elemento. Los todos más vastos (infinitos), jamás. Kublai se da cuenta de que no hay otro modo de conocer conjuntos tan grandes. El conjunto de los números naturales se conoce a partir de un elemento (uno) y de una ley de formación (uno más uno: dos). Un espacio vectorial se conoce a partir de los vectores de su base y del modo en que operan (suman y multiplican) entre ellos y con los escalares de un cuerpo K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La función de Marco es describir a Kublai ciudades reales mediante el relato de sus características. Pero Kublai quiere saber ahora si una serie de características que él reúne corresponde a las de una ciudad real. La función de Kublai es inversa de la de Marco, pero está por ver si su dominio no es vacío.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.