7 resultados para Banho finito

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudiamos, desde perspectivas simbólica y fenomenológica, diferencias y analogías existentes entre dos definiciones: la de límite finito de una sucesión y la de sucesión de Cauchy. Las diferencias entre una y otra definición parecen acentuarse en el aspecto fenomenológico, ya que observamos fenómenos distintos en cada una de ellas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo resumimos un estudio empírico llevado a cabo con estudiantes de bachillerato con la intención de explorar y describir los distintos significados vinculados al concepto de límite que los estudiantes pueden poner de manifiesto al abordar tareas que involucran la relación entre varios sistemas de representación. Describimos algunos aspectos del lenguaje utilizado por los escolares en sus interpretaciones, profundizando en las concepciones intuitivas a las que dan lugar, seguido de la exploración del manejo de otros sistemas de representación por parte de los escolares como el simbólico a la hora de interpretar gráficas de funciones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presentamos resultados relativos a la equivalencia matemática y fenomenológica de la definición de límite finito de una sucesión y la definición de sucesión de Cauchy. Para ello enunciamos dos criterios que permiten determinar cuando dos fenómenos son equivalentes y cuando lo son dos definiciones, desde un punto de vista fenomenológico. A continuación y usando estos resultados realizamos avances significativos para demostrar en un futuro próximo que la definición de límite finito de una función en el infinito y la condición de Bolzano-Cauchy, además de ser equivalentes matemáticamente también lo son fenomenológicamente. Para ello enunciamos los fenómenos organizados por la definición de Bolzano-Cauchy que convenimos en llamarla definición de función de Cauchy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuestras investigaciones dan cabida, con los mismos métodos, a diferentes nociones del límite, como límite finito de una sucesión o límite finito de una función en un punto. Consideramos tres elementos relacionados: fenomenología, sistemas de representación y pensamiento matemático avanzado. En la primera parte lo explicamos y presentamos ideas de otros marcos teóricos. Hemos usado las mismas herramientas metodológicas para descubrir y estudiar los fenómenos organizados por tres casos de límite finito y para reconocer esos fenómenos en libros de texto. Además, hemos desarrollado instrumentos para mostrar los fenómenos que emplean alumnos y profesores. En la segunda parte describimos los métodos usados para extraer información de libros de texto y alumnos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Para conocer un todo no es necesario el conocimiento exhaustivo de cada uno de los elementos que lo componen. Basta con determinar sus elementos fundamentales y saber qué leyes determinan la relación entre ellos y los demás. Solamente un todo pequeño (finito) puede conocerse por completo, elemento a elemento. Los todos más vastos (infinitos), jamás. Kublai se da cuenta de que no hay otro modo de conocer conjuntos tan grandes. El conjunto de los números naturales se conoce a partir de un elemento (uno) y de una ley de formación (uno más uno: dos). Un espacio vectorial se conoce a partir de los vectores de su base y del modo en que operan (suman y multiplican) entre ellos y con los escalares de un cuerpo K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demos un gran salto en el tiempo. En números anteriores narramos los avatares del problema isoperimétrico en Grecia y en los países islámicos medievales, respectivamente. Retomemos el enfoque dado por Pappus con el que llegó a la conclusión de que, para un área dada, el perímetro del hexágono regular es menor que el del cuadrado o el del triángulo equilátero, por lo que si el problema se plantea sobre una teselación regular del plano, un trozo finito del teselado regular hecho con hexágonos regulares es el que requiere menor perímetro. Bueno, aún no podemos detenernos porque hemos de hacer la demostración de la proposición de Pappus en 3D. El conocido MacLaurin (1698-1746), profesor de Aberdeen y Edimburgo, utilizó el método que a continuación presentamos. Lo hizo para poner de manifiesto la capacidad de la Geometría clásica como fuente de investigación en cualquier momento (conviene recordar que MacLaurin estaba centrado en analizar las posibilidades de los métodos infinitesimales que en su época emergían, lo que demostró sobradamente con su Treatise of Fluxions).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este articulo se pretende hacer ver a los alumnos que el uso de una calculadora gráfica ayuda a comprender el rápido crecimiento de la función exponencial. Por otra parte, en la actividad del cálculo de un limite indeterminado, podemos observar cómo el uso de la calculadora nos permite justificar la necesidad de lo descomposición factorial de polinomios para obtener este tipo de límites, ya que la calculadora, debido a que utiliza un número finito de cifras decimales, puede llegar a introducir errores de bulto.