12 resultados para Aspecto léxico
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este trabajo se muestra la implementación, los resultados y las conclusiones de una prueba piloto para evaluar el valor propedéutico del aprendizaje matemático de todo el ciclo medio, teniendo en cuenta los requerimientos del ingreso universitario.
Resumo:
El SND ha sido considerado un aspecto básico dentro del currículo de matemáticas, debido a su funcionalidad en los procesos de escritura de cantidades y en el desarrollo de algoritmos de operaciones básicas. Acorde a ello, la escuela dedica gran cantidad de tiempo al proceso de escritura y reconocimiento de cantidades, a la comparación de cantidades y al reconocimiento del valor posicional de una cifra, pero aun así los estudiantes no logran comprender los principios báscos del sistema. La presente propuesta se basa en la sistematización de una secuencia de actividades de aula orientada al reconocimiento de los principios que estructuran y dan sentido al S.N.D. como es el proceso de equivalencias entre las unidades del sistema y el reconocimiento del valor de posición de una cifra dada. Para llevar a cabo el proceso de sistematización de experiencias, se retomaron los principios metodológicos de la investigación acción educativa. Estas orientaciones permiten una búsqueda continua de alternativas de trabajo, y a la vez integran la exploración reflexiva que el docente hace de su práctica incidiendo en la lanificación y el mejoramiento de la misma, lo cual constituye un elemento esencial para la formación investigativa de los futuros docentes de matemáticas
Resumo:
O projecto de investigação “Estudio sobre la enseñanza-aprendizaje de conceptos fundamentales del análisis matemático (limite, continuidad, derivada e integral) en manuales y en estudiantes del Bachillerato-LOGSE y de primer curso universitario” parece muito interessante nomeadamente quando pretende estudar os problemas relacionados com o ensino e aprendizagem da Análise Matemática nos dois anos do Bachillerato e no primeiro curso da Universidade, e juntar na mesma equipa professores dos dois níveis de ensino envolvidos. O facto de se ligar o ensino da Análise Matemática no pré-universitário e no universitário é um aspecto inovador na investigação em educação matemática.
Resumo:
Estudiamos, desde perspectivas simbólica y fenomenológica, diferencias y analogías existentes entre dos definiciones: la de límite finito de una sucesión y la de sucesión de Cauchy. Las diferencias entre una y otra definición parecen acentuarse en el aspecto fenomenológico, ya que observamos fenómenos distintos en cada una de ellas.
Resumo:
El presente reporte articula el modelo educativo de van Hiele en su aspecto prescriptivo con la enseñanza de uno de los conceptos fundamentales del Análisis Matemático, continuidad local, a través de la implementación y el desarrollo de un Módulo de Aprendizaje que permite procesos de razonamiento en los estudiantes con el fin de promoverlos de un Nivel II a un Nivel III, el módulo es construido en correspondencia con los descriptores de fases para de dar cuenta de las estructuras mentales elaboradas. Posteriormente, en el análisis de cada uno de los tres casos, se describe en categorías en correspondencia los descriptores y donde se hace explícito como razonan los estudiantes en su paso del Nivel II al Nivel III respecto al concepto de continuidad local.
Resumo:
Debo empezar por hacer referencia a los amigos y colegas de trabajo, en particular al grupo de investigación Matemáticas Escolares de la Universidad Distrital Francisco José de Caldas (Matescud) pues del intercambio con ellos aparecen todas las ideas que expondré. La Asociación Colombiana de Matemática Educativa ha decidido abordar en este encuentro un aspecto crucial para la mejor comprensión de las peticiones y obligaciones que se formulan en los Lineamientos Curriculares para Matemáticas (MEN, 1998). Entre las peticiones y obligaciones aludidas se encuentra, por ejemplo:1. La adopción de una perspectiva didáctica centrada en la teoría de la transposición didáctica 2. La adopción de una perspectiva cultural de la educación matemática 3. La adopción como uno de los propósitos de formación para los estudiantes el de su desarrollo de pensamiento matemático y de manera particular el desarrollo de su pensamiento espacial, métrico, variacional, aleatorio y numérico 4. Como consecuencia de la anterior adopción aparece el trabajo por resolución de problemas ya que de acuerdo con Dubinsky
Resumo:
La mayoría de personas involucradas directa o indirectamente con la Educación Matemática estamos de acuerdo en que la comprensión de conceptos es el aspecto más relevante en la enseñanza y el aprendizaje de las Matemáticas. Nuestro objetivo es diseñar y aplicar una entrevista semiestructurada de carácter socrático, para describir cómo comprenden el concepto de Continuidad cuatro estudiantes de cursos de cálculo diferencial en Instituciones oficiales de la ciudad de Medellín. Para alcanzar este objetivo utilizamos la entrevista semiestructurada de carácter socrático, como instrumento principal de recolección de información, así como observaciones y materiales escritos; la entrevista a su vez se convirtió en una estrategia metodológica para mejorar la comprensión de los estudiantes, en el marco de la Teoría de Pirie y Kieren, nuestro Marco Teórico.
Resumo:
En este trabajo se reportan resultados de investigaciones sobre el concepto de límite, particularmente aquellas centradas en el aspecto cognitivo, y estos, tanto en el nivel medio superior como en el nivel superior. Estas investigaciones las clasificamos en tres grupos: las que tratan el preconcepto de límite, sobre las concepciones que se tienen del concepto de límite y las que reportan dificultades al tratamiento del concepto de límite. Algunos de los resultados de estas investigaciones es que el preconcepto está asociado a “una barrera no rebasable”; en cuanto a las concepciones sobre el concepto están las que se relacionan con “valor inalcanzable”, “como aproximación”, entre otras; y algunas dificultades como al redactar la definición del límite.
Resumo:
El propósito de esta ponencia es presentar los resultados de una investigación que tuvo como objetivo analizar aspectos destacados para una comunicación apropiada en clase de matemáticas; entendida esta como la que ocurre en un espacio donde se promueve la interacción, la participación de los sujetos, la argumentación, el debate y la negociación de significados, teniendo en cuenta como aspecto central en la obtención de significados. Se desarrolló trabajando con dos poblaciones, una en el nivel básico y otra en educación superior. Se hizo un diagnóstico inicial sobre la forma como habitualmente se da la comunicación, estableciendo los patrones de interacción de esos docentes en sus clases. Se diseñaron y desarrollaron actividades específicas de clase, implementando una dinámica novedosa para el trabajo en grupo, como espacio de conjeturación, argumentación y debate hasta llegar a consensos. La investigación mostro cómo, con este tipo de estrategias la clase se convierte en una comunidad que hace, discute y aprende matemáticas.
Resumo:
Las matemáticas y la pintura trabajan con ideas. La palabra idea viene del griego ειδω, que significa ver, mirar u observar, y de ειδοζ, que significa figura, forma, aspecto o visión. Detrás de una montaña concreta está la idea de montaña, un dibujo abstracto, unas líneas que permiten reconocer la montaña detrás de las rocas, los pinos o la nieve. La diferencia entre este árbol y árbol, entre un círculo que dibujamos en la pizarra y círculo: la diferencia entre la cosa y la idea de la cosa. En matemáticas y en pintura se buscan las ideas de las cosas.
Resumo:
En este trabajo se estudia la influencia y el papel de un aspecto del contexto exterior producido por elecciones de tipo lingüístico. Cuando el lenguaje escogido es de tipo coloquial, las primeras preguntas son informales, sobre aspectos extraescolares, y la discusión numérica atañe a N, hablamos de contexto natural. Este contexto parece inducir, en el sujeto sometido a la prueba, la convicción implícita de que debería contestar según modelos intuitivos, que dependen de la competencia que adquirió en los primeros niveles de escolarización o de modelos ingenuos. También examinamos el problema de la conciencia de los alumnos en situaciones de dificultad.
Resumo:
Este trabajo de investigación supone un esfuerzo por comprender mejor el papel que las representaciones gráficas pueden jugar en la resolución de problemas matemáticos y se ha centrado en el estudio sistemático de los aspectos siguientes: los elementos que determinan la elección, la interpretación y las modificaciones de las representaciones gráficas en los comportamientos de resolución de problemas; las consecuencias de un entrenamiento en resolución de problemas en la utilización de representaciones gráficas. Dicho estudio ha estado motivado por la constatación del deterioro sufrido por la educación matemática, y en particular por la resolución de “verdaderos problemas" en España en las últimas décadas, y también por el declive del aspecto visual de las matemáticas en beneficio de los aspectos simbólicos, verbales y analíticos.