8 resultados para Aproximaciones
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Esta comunicación aporta información sobre cómo un experimento de enseñanza en un entorno tecnológico usando applets elaborados con el programa de geometría dinámica Geogebra, ayudó a estudiantes de bachillerato (17-18 años) a construir distintas aproximaciones al concepto de función primitiva. Los resultados muestran por una parte que los estudiantes fueron capaces de relacionar distintas ideas usando argumentos variados para asociar la gráfica de una función con la de una de sus primitivas; en estos argumentos subyace principalmente la relación de este concepto con el de derivada. Por otra parte las soluciones aportadas se apoyaron más en el pensamiento visual que en el analítico.
Resumo:
AUTONOMÍA ESCOLAR Y PLANIFICACIÓN EN MATEMÁTICAS La autonomía escolar se estableció en Colombia en 1994, con la intención de que las instituciones educativas adaptaran el currículo a su contexto. Como consecuencia, instituciones y profesores se hicieron responsables del diseño curricular en todas las áreas, con la guía de lineamientos curriculares publicados por el gobierno. Estos diseños curriculares que se plasman en el plan de área. En este trabajo caracterizamos los planes de área de matemáticas en una muestra de conveniencia de 18 colegios de educación básica secundaria y educación media de Bogotá y sus cercanías y exploramos en qué medida se llevan a la práctica los lineamientos gubernamentales en esos documentos. Codificamos los planes de área teniendo en cuenta las cuatro componentes del currículo: el contenido, los objetivos, la metodología y la evaluación. Para cada una de estas componentes, establecimos:1. el nivel de generalidad con el que se trata, 2. los términos que las instituciones utilizan para referirse a ella y 3. la coherencia y la estructura con la que las instituciones la describen. Los resultados ponen de manifiesto la variedad de aproximaciones de las instituciones de la muestra a la planificación del área de matemáticas. Esta variedad se constata en el número de niveles de generalidad que aparecen en los documentos, en la diversidad de términos que se utilizan para referirse a cada uno de los componentes curriculares y en el nivel de detalle con que se describen. Los resultados sugieren que, en las instituciones de la muestra en las que las ideas de estándar y competencia aparecen en el plan de área, estas ideas no juegan un papel organizador del diseño curricular. Así mismo, los resultados muestran que no existe un significado compartido para los términos “estándar”, “objetivo”, “logro” o “desempeño” entre los documentos de la muestra. Adicionalmente, hemos observado que no se constata coherencia entre esta expectativa de aprendizaje y el contenido propuesto dentro de la planificación. Estos resultados nos llevan a conjeturar que, en las instituciones a las que pertenecen los documentos de la muestra, no existe una aproximación sistemática, estructurada y fundamentada a la planificación curricular.
Resumo:
La enseñanza de la geometría es materia de muchos estudios y aproximaciones. En trabajos considerados para este taller (Bermúdez,1996; Flores y Barrera,2002; Nolé, 2001; Siñeriz,2002; Gutiérrez y Jaime,1994), se percibe el interés de docentes e investigadores latinoamericanos en generar propuestas que permitan mejorar su enseñanza. En general, éstas parten del modelo Van Hiele, y se reportan propuestas a alumnos (Bermúdez, 1996) y profesores (Flores y Barrera, 2002) en los cuales se exploran dificultades de unos y otros para acceder a los distintos niveles de aprendizaje. Así, se propuso este taller donde el participante pudo experimentar el proceso de conjetura y demostración, para trabajar en el nivel 4 del modelo, del que se registran pocas propuestas.
Resumo:
El número 19 de la renovada revista SIGMA (septiembre de 2001), que anima desde Bilbao Santiago Fernández, incluye un artículo de Julián Aguirre: «Todo lo que siempre quisiste saber sobre π». Se trata de un atractivo paseo histórico por el problema de la cuadratura del círculo y los valores que las distintas civilizaciones han ido asignando a ese «número-letra», así como por los métodos empleados para obtenerlos. Por lo que al mundo árabe se refiere sólo aparecen las aproximaciones utilizadas por el inevitable al-Jwarizmi. Aprovechamos esta excusa para dedicar este artículo a un matemático que atrajo nuestro interés, en un primer momento, precisamente por su aproximación de π.
Resumo:
Este articulo ilustra cómo un problema ambiguamente formulado admite diferentes lecturas y soluciones, permitiendo así distintas aproximaciones según el nivel y las capacidades del alumno. El problema de optimización es explorado en un entorno de geometría dinámica (The Geometer's Sketchpad). Esta aproximación geométrica facilita la formulación de conjeturas y su prueba visual, allanando el camino a la prueba analítica, si ésta se considera pertinente.
Resumo:
Uno de los más prolíficos matemáticos, sino el que más, que han existido a lo largo de toda la historia, ha sido el suizo Leonhard Euler (1707-1783). Además de, en nuestro caso, introducir el uso de la letra griega π (inicial de perímetro) para nuestro número, dió numerosas aproximaciones mediante desarrollos en serie de la relación existente entre la circunferencia y su diámetro. El presente articulo trata de explicar el ingenioso procedimiento de dos de dichas series: la serie de Jacques Bernouilli y, la serie de Leibniz.
Resumo:
Se presenta una construcción rigurosa de la función exponencial con base en aproximaciones decimales de números reales y utilizando herramientas relativamente simples de la teoría de sucesiones numéricas. Visto desde la óptica de un docente de secundaria, esta construcción es la formalización de la construcción intuitiva que siempre hemos enseñado a los muchachos. En la primera parte se repasa la completitud de R y sus consecuencias, así como algunas nociones básicas de sucesiones. La segunda parte prsenta paso a paso, la construcción de la función exponencial con exponente racional y en la tercera parte se extiende esta definición a exponentes reales. La presentación es completada con ejercicios que le ayuden al lector a profundizar un poco más en el tema, de acuerdo con los conocimientos previos. El trabajo esta dirigido a profesores y futuros profesores de secundaria. Se ha evitado en lo posible el uso de herramientas matemáticas sofisticadas, con el fin de hacer la lectura apropiada a la mayor audiencia posible.
Resumo:
Este trabajo se propone compartir y discutir el resultado de una investigación en la que se utilizó la modelización del cálculo del volumen del ventrículo izquierdo del corazón como instrumento en el proceso de enseñanza-aprendizaje de las matemáticas para enriquecer y mejorar nuestra práctica cotidiana, realizada con alumnos que cursan el nivel medio. El modelo proviene de aproximaciones realizadas para poder entender mejor la naturaleza y severidad de las afecciones cardíacas y mostrar con una visión simplificada aspectos de diagnóstico médico. (Pichel y otros, 1988). Otorgar significatividad a conceptos como área y volumen. El proceso de modelización llevado a cabo en el aula siguió la secuencia planteada por Sallett Biembengut y Hein (1999). Esto dio origen a la búsqueda de información; a partir del análisis de la misma y de la elección de una figura se elaboraron actividades con el objeto de modelizarlo a través de alguna cuádrica. Esta experiencia se constituyó en un medio eficaz para la motivación ya que los alumnos optaron por un desarrollo activo, demostrando gran interés al realizar las actividades dado que trabajaron con situaciones reales, buscando respuestas en la matemática a problemas concretos de otras ciencias.