6 resultados para 2004-02-BS
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Una propuesta para la aproximación intuitiva de funciones por polinomios en la ESO y el bachillerato
Resumo:
Se extiende el concepto de aproximación de un número real al de aproximación de una función. En la primera fase, a partir de la suma de una progresión geométrica, se obtienen casos particulares de funciones polinómicas que aproximan un tipo concreto de funciones racionales. En la segunda fase se encuentran funciones polinómicas que aproximan cualquier función continua. El profesor utiliza la historia de las Matemáticas como recurso didáctico haciendo comentarios que recuerdan la evolución histórica de la aproximación de funciones en series de potencias. Este recorrido es el mismo que van a seguir los alumnos.
Resumo:
El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.
Resumo:
En este trabajo presentamos los resultados de un cuestionario formado por cuatro problemas abiertos, a través de los cuales evaluamos la comprensión de la idea de media aritmética. Analizamos los componentes del significado que asigna una muestra de 53 alumnos de educación secundaria a este concepto, y, en particular, su comprensión de propiedades numéricas de este concepto.
Resumo:
Nos son tan habituales algunas cosas que no nos sorprendemos ante ellas ni nos paramos a pensar acerca de su significado profundo o sobre la maravilla de su gestación, perdida a veces en la noche de los tiempos. Considerado en abstracto, como una relación entre superficies de figuras descontextualizadas, ¡no es nada evidente el teorema de Pitágoras!, pero hay muchos problemas de tipo práctico que obligan a pasar obligatoriamente por el ángulo recto. ¿Cómo construir si no, por ejemplo, un edificio de una mínima prestancia? Las divulgaciones al uso han justificado siempre su origen en la necesidad de medir terrenos después de las crecidas de los grandes ríos en cuyas orillas se asentaron las primeras civilizaciones sedentarias. Se supone también que habría que definir retículas ortogonales y que ello llevaría a catalogar ternas de números que permitieran construir ángulos rectos. Cuando se contempla desde un montículo la hermosa anarquía distributiva que el devenir de los tiempos ha producido en nuestros campos, parece claro que ese afán regulador sólo puede darse bajo un fuerte poder centralizado. Así pues, quizás haya que incluir el teorema Kou-Ku —junto, por ejemplo, el monoteísmo y los primeros códigos legislativos— entre las primeras consecuencias de la aparición del Estado (con mayúsculas, claro).
Resumo:
¿Dónde están las cosas? ¿Dónde estoy yo? Aquí. Estoy aquí y ahora. Doy un paso y ya no estoy, ni aquí ni ahora, sino más lejos, y después. ¿Qué distancia me separa de mí mismo? Ninguna, cero, nada. O cuarenta mil kilómetros, la cintura del planeta. O pi multiplicado por veinte mil millones de años luz, el perímetro del Universo, más o menos. O la longitud de la trayectoria de un vuelo imaginario y arbitrario que partiendo de mi, aquí y ahora, volviera a mí, aquí, pero después: ¿Un dedo? ¿Un metro? ¿El infinito?
Resumo:
Estamos en tiempo electoral (y en nuestro país casi todos lo son). El pistoletazo mediático de salida se dio en las elecciones de Cataluña, donde desde tiempo atrás todos los sondeos daban por ganador al PSC, tanto por votos como por escaños. Incluso seguían así los sondeos de las emisoras de radio y TV de las ocho de la tarde, después de votar. Pero lo cierto es que, una vez escrutados todos los votos, quien ganó en escaños fue CiU.