70 resultados para estudiante
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
En el proceso del enseñanza y aprendizaje de las matemáticas entre el docente y el estudiante, existe una relación básica e importante, es el lenguaje, por ello ya existen diversas técnicas de cómo hablarles a los educandos, pero ¿qué pasa cuando los estudiantes son sordos?, con la nueva ley de inclusión no existe ni la posibilidad de no aceptarlos o rehusar el cargo, entonces surge el reto de cómo enfrentar lo mejor posible dicho proceso. Esta comunicación trata de mostrar la experiencia de como un profesor sin ser capacitado para tal situación, buscando alternativas para sus clases con población sorda, en grados Decimo y Undécimo de la I.E. Camacho Carreño, de la ciudad de Bucaramanga.
Resumo:
Esta propuesta metodológica, nace como producto de la tesis de maestría de uno de los ponentes, en ella se intenta mostrar una forma de enseñar las secciones cónicas en un ambiente didáctico que se basa en que el estudiante aprenda haciendo. Por ello, se presentan actividades para que el estudiante explore y descubra características de las figuras que él construirá y, en diálogo con sus compañeros y el docente, construya su propio conocimiento. Para lograr este proceso se empleó como referente teórico el modelo de Van-Hiele el cual se caracteriza al tener dos secciones, una de las cuales es descriptiva, en ella se observan niveles de razonamiento. La otra parte nos da a los maestros las pautas para que nuestros estudiantes avancen de un nivel a otro, estas pautas se conocen como fases de aprendizaje.
Resumo:
El siguiente documento presenta una secuencia de actividades para trabajar la noción del concepto de limite involucrado en el pensamiento variacional en grado once, donde se toma como punto de partida el trabajo con sucesiones, permitiendo desarrollar a través del uso de diferentes tipos de sucesiones y la noción de convergencia; dicho concepto, tomado desde la definición de (Steward, Redlin, & Watson, 2001). Basado en la metodología propuesta por el grupo (DECA, 1992), la cual, no solo muestra el enseñar matemáticas, como entregar algoritmos al estudiante, sino que por el contrario, un aprendizaje desde la construcción del objeto matemático, resaltando la participación activa y critica del estudiante.
Resumo:
A menudo se piensa que en las Matemáticas no 69 hay lugar para el ensayo y el error, propagando la idea de que gran parte de la labor del matemático es tener la ocurrencia apropiada. En este artículo mostramos dos problemas que, aunque aparentemente deberían resolverse usando la misma idea, son resueltos sin justificación alguna en los libros de texto utilizando ideas diferentes. Además, presentamos otra situación mucho más próxima al estudiante con la misma dificultad subyacente y que sirve para explicar dicha dificultad de un modo más adecuado al nivel del alumno.
Resumo:
El último de los problemas propuesto a los lectores en el Tratado de Huygens, publicado por primera vez en 1657, es hoy día conocido como el problema de la ruina del jugador. Dicho problema consiste en calcular la probabilidad de que un jugador arruine al contrario en un juego a un número indeterminado de partidas, cuando los dos jugadores inician el juego con un cierto número de monedas cada uno. A priori, su enunciado asusta cuando se enfrenta por primera vez, pero puede ser un buen recurso didáctico para profesores que enseñan cálculo de probabilidades a estudiantes de un determinado nivel, dada la resolución elegante y cómoda que se dispone, sin necesidad de un gran aparato matemático. La autoría del problema, tradicionalmente asignada a Huygens, la resolución de éste, la de De Moivre de 1712, así como una resolución más actual y cercana al estudiante del mismo, forman parte del contenido de este artículo.
Resumo:
Una de las intenciones que subyacen al diseño de este módulo, dedicado al análisis de datos, es entender que la fase de implementación en el aula de la unidad didáctica puede entenderse como un experimento en el que la gran mayoría de los instrumentos concebidos para extraer información ya se diseñaron en el análisis de actuación. Una vez preparados los documentos que planifican el proceso de enseñanza en los módulos 1 al 4 y los instrumentos que servirán de referencia para evaluar los procesos de enseñanza y aprendizaje durante y después de la implementación (módulo 5), este módulo se centra en la organización y análisis de los datos que se producirán durante la implementación en el aula de la planificación de la unidad didáctica. Entre los datos obtenidos y que ayudarán a mejorar el aprendizaje del estudiante y a modificar la propia práctica de la enseñanza, este módulo se centrará en el aprendizaje, mientras que, en el módulo 7, se completará el análisis de datos que tienen que ver más con el proceso de enseñanza.
Resumo:
En este artículo se obtiene un método de obtención de rectas tangentes a curvas polinómicas sin necesidad de conocer el cálculo de derivadas. Incluso no precisa conocimientos previos de trigonometría. El cálculo de máximos y mínimos es inmediato. El procedimiento que se presenta puede considerarse como una primera toma de contacto del estudiante, de manera inmediata, con los problemas con los que se va a encontrar posteriormente al estudiar el cálculo diferencial. Este método está pensado para incitar al alumno el interés por las derivadas.
Resumo:
El propósito de este artículo es presentar una propuesta didáctica de la integral definida para la educación secundaria obligatoria y bachillerato a través de unas secuencias de aprendizaje que ayuden al estudiante a captar las ideas fundamentales del cálculo integral, del concepto de integral y del proceso de integración.
Resumo:
La razón de esta propuesta, está fundamentada en brindar una exposición simple de una prueba de un teorema de geometría analítica, utilizado por nuestros estudiantes en la educación media y la educación media superior. Mi idea nació de la iniciativa de postular una demostración a un nivel básico, de tal forma que cualquier estudiante que conozca algunos principios generales de álgebra de polinomios, geometría analítica y trigonometría, pueda comprenderla sin mayor complicación.