65 resultados para Ecuaciones integrales
Resumo:
En este estudio se describe la actuación de los tutores en un programa híbrido de formación de postgrado para profesores de matemáticas de secundaria en ejercicio. En este programa, los grupos abordaron el análisis didáctico de temas como números enteros, introducción al lenguaje algebraico, ecuaciones lineales con una incógnita y resolución de sistemas de ecuaciones lineales. Codificamos y analizamos los comentarios de los tutores a los trabajos de los grupos de profesores en formación a su cargo. Para ello, construimos una estructura de categorías y códigos conjugando una revisión de literatura, una visión del aprendizaje de los profesores en formación y una revisión cíclica de los datos. En este trabajo destacamos el proceso seguido para caracterizar las actuaciones comunes de los tutores mediante el análisis de frecuencia de sus comentarios.
Resumo:
Se sustenta una propuesta didáctica para la comprensión de las cónicas en estudiantes de 16 a 18 años de edad, a partir de una investigación con enfoque cognitivo, desde la teoría los modos de pensamiento de Anna Sierpinska, donde se distinguen tres modos de pensar un concepto: sintético-geométrico (SG), analítico-aritmético (AA) y analítico-estructural (AE). Nuestra problemática se sitúa en la enseñanza-aprendizaje de las cónicas cuando el discurso matemático escolar da prioridad a las ecuaciones cartesianas que las describen. Consideramos que el énfasis en esas ecuaciones, promueve la pérdida de su estructura como lugar geométrico. Como resultado de investigación, se diseña una propuesta didáctica exploratoria en la geometría del taxi, con la convicción de que el aprendiz entiende las cónicas cuando transita entre los distintos modos de comprenderlas: SG (como figuras que las representan), AA (como pares ordenados que satisfacen una ecuación) y AE (como lugar geométrico).
Resumo:
La presente investigación surge en el programa “perfeccionamiento en matemática para profesores de enseñanza media” realizado en el IUFM le Mirail, Universidad de Toulouse, Francia. El estudio consiste en el diseño de una propuesta didáctica para el aprendizaje de la ecuación vectorial de una recta en el espacio, en estudiantes de 16 a 18 años, el interés nace por la incorporación de estos temas en el curriculum nacional. Para el diseño de la propuesta se utiliza elementos de la Teoría Antropológica de lo Didáctico (TAD), donde se entenderá como organización matemática, a un conjunto de tipos de tareas, de técnicas o procedimientos para resolver estas tareas y de definiciones, propiedades y teoremas que permitan describir y justificar la resolución de la tarea. Entre los elementos que aportan en el surgimiento de la organización matemática, se distinguen, tipos de tareas como, establecer si puntos del plano o el espacio son colineales y determinar las condiciones para que un tercer punto sea colineal a dos puntos dados, en el plano o en el espacio.
Resumo:
Este trabajo presenta resultados parciales de un proyecto más amplio, cuyo propósito es generar conocimiento sobre la evolución de formulaciones algebraicas y su utilización en la resolución de problemas. Se realizó un estudio referido a actividades relacionadas con la resolución y tratamiento algebraico de ecuaciones y funciones, según lo prescripto para cada año por el currículum a enseñar. Conjuntamente con el instrumento utilizado para el estudio mencionado, los estudiantes respondían preguntas acerca de cómo comprendían cada actividad, si la habían estudiado anteriormente, o nunca, si no recordaban como resolver y si reconocían o no el tema como un conocimiento anterior. Esta presentación muestra los resultados obtenidos para cada año escolar en cada actividad propuesta.
Resumo:
Si tienes que elegir entre dos alternativas, sin saber cuál es la más favorable, no pierdes nada por tomar la decisión lanzando una moneda al aire. ¿Es así? No, hay métodos mejores.
Resumo:
El trabajo que hemos desarrollado en este artículo es un estudio de un método histórico desarrollado por Descartes para calcular la recta normal a una curva, y que puede ser aprovechado para calcular derivadas puntuales y generales de funciones. El método, requiere de la resolución de ecuaciones algebraicas y transcendentes, que en principio pueden ser complicadas (por eso ha caído en el olvido), pero que permite introducir en el aula una gran cantidad de aspectos docentes. Además, la idea en la que se fundamenta el método de Descartes puede ser aprovechada para calcular la distancia de un punto a una recta o un plano.
Resumo:
En las matemáticas del bachillerato, la representación gráfica de funciones racionales suele abordarse como un caso más de la representación general de funciones, aunque con una atención especial en el cálculo de las asíntotas. Para el cálculo de primitivas de funciones racionales se usa la descomposición de las mismas en fracciones simples. Se trata aquí de aplicar esta descomposición en la representación gráfica haciendo mención de las ventajas sobre el método que generalmente se suele usar.
Resumo:
Una vez acordado el precio nos ponemos en camino. Son las ocho de la mañana y hace un día espléndido. El cielo es una sábana azul sin mácula y el verdor intenso que nos rodea justo al abandonar las bulliciosas calles de Ternate refleja la luz del astro en multitud de tonalidades deslumbrantes. La carretera serpentea arriba y abajo perfilando la costa con el mar a la derecha. Después de pasar por diversos pueblos y atravesar un bosque espeso la vegetación desaparece de repente al llegar a Batu Angus (roca abrasada), una cicatriz colosal e imborrable, un río pétreo vestigio de la erupción del Gamalama en el siglo XVIII.
Resumo:
¿Dónde están las cosas? ¿Dónde estoy yo? Aquí. Estoy aquí y ahora. Doy un paso y ya no estoy, ni aquí ni ahora, sino más lejos, y después. ¿Qué distancia me separa de mí mismo? Ninguna, cero, nada. O cuarenta mil kilómetros, la cintura del planeta. O pi multiplicado por veinte mil millones de años luz, el perímetro del Universo, más o menos. O la longitud de la trayectoria de un vuelo imaginario y arbitrario que partiendo de mi, aquí y ahora, volviera a mí, aquí, pero después: ¿Un dedo? ¿Un metro? ¿El infinito?
Resumo:
El objetivo de este trabajo es el de presentar una aplicación, llevada a cabo en un centro de enseñanza secundaria, de un modelo de decisión diseñado para situaciones de toma decisiones con múltiples expertos con información espero que en concreto dicho modelos utilizados para clasificar, de mayor a menor grado de influencia, un conjunto de posibles causas del mal comportamiento de los estudiantes en el aula, de acuerdo con las opiniones de un grupo de profesores de dicho centro.
Resumo:
En este artículo se reflexiona sobre la incorporación de gráficos tridimensionales a la educación matemática en bachillerato mediante el uso de un sistema de cálculo simbólico, y se presenta un ejemplo de aplicación. Al final del artículo se propone una posible línea de ampliación de la actividad descrita y se hace una última reflexión sobre las posibilidades que, para el aula, nos ofrecen los sistemas de cálculo simbólico.
Resumo:
En este artículo se presenta un protocolo criptografico para la administración de secretos como base para la enseñanza y aplicación de las matemáticas en enseñanza secundaria. La facilidad de comprensión del problema propuesto lo convierte en un arma eficaz para atraer la atención de los estudiantes en contenidos de difícil aprendizaje como polinomios y sistemas de ecuaciones.
Resumo:
En esta comunicación presentamos parte de los resultados obtenidos en las investigaciones realizadas dentro de Planes Nacionales de Investigación Educativa del C.I.D.E. durante los cursos 1987-88 y 1988-89, que trataban de averiguar las dificultades del aprendizaje del álgebra en secundaria. El objetivo inicial de este trabajo era estudiar las dificultades planteadas en la resolución de problemas de enunciado verbal en los que se utiliza una ecuación de primer grado o un sistema lineal de dos ecuaciones con dos incógnitas, ya que considerabamos, como la mayoría de los profesores lo hace, que la mayor dificultad presentada en álgebra estaba en la resolución de estos problemas.
Resumo:
Realizar una teselación del plano consiste en «pavimentarlo» completamente con ayuda de formas planas de dimensiones finitas. El término proviene del Latín tesellam, o pieza cuadrada de mármol, piedra. etc.. que entraba en la composición de pavimentos de mosaico romanos.
Resumo:
Tras una breve introducción para hacer referencia a distintos tipos de códigos secretos, el articulo estudia con detalle, esquemáticamente y mediante ejemplos, los códigos matriciales. Se expone, además, una forma de automatizar dichos códigos en el aula, mediante un programa escrito en dBASE III Plus. La parte final consta de unas preguntas sobre sus posibilidades didácticas.